Skip to main content

Scaffolds for Cartilage Regeneration: To Use or Not to Use?

  • Chapter
  • First Online:
Bioinspired Biomaterials

Abstract

Joint cartilage has been a significant focus on the field of tissue engineering and regenerative medicine (TERM) since its inception in the 1980s. Represented by only one cell type, cartilage has been a simple tissue that is thought to be straightforward to deal with. After three decades, engineering cartilage has proven to be anything but easy. With the demographic shift in the distribution of world population towards ageing, it is expected that there is a growing need for more effective options for joint restoration and repair. Despite the increasing understanding of the factors governing cartilage development, there is still a lot to do to bridge the gap from bench to bedside. Dedicated methods to regenerate reliable articular cartilage that would be equivalent to the original tissue are still lacking. The use of cells, scaffolds and signalling factors has always been central to the TERM. However, without denying the importance of cells and signalling factors, the question posed in this chapter is whether the answer would come from the methods to use or not to use scaffold for cartilage TERM. This paper presents some efforts in TERM area and proposes a solution that will transpire from the ongoing attempts to understand certain aspects of cartilage development, degeneration and regeneration. While an ideal formulation for cartilage regeneration has yet to be resolved, it is felt that scaffold is still needed for cartilage TERM for years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2018) The WHO register. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. Accessed 11 Dec 2019

  2. Benders KE, Terpstra ML, Levato R et al (2019) Fabrication of decellularized cartilage-derived matrix scaffolds. JoVE 143:e58656

    Google Scholar 

  3. Hazwani A, Sha’Ban M, Azhim A (2019) Characterization and in vivo study of decellularized aortic scaffolds using closed sonication system. Organogenesis 15(4):120–136

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wiggenhauser PS, Schwarz S, Koerber L et al (2019) Addition of decellularized extracellular matrix of porcine nasal cartilage improves cartilage regenerative capacities of PCL-based scaffolds in vitro. J Mater Sci Mater Med 30(11):121

    CAS  PubMed  Google Scholar 

  5. Yusof F, Sha’ban M, Azhim A (2019) Development of decellularized meniscus using closed sonication treatment system: potential scaffolds for orthopedics tissue engineering applications. Int Nanomed 14:5491–5502

    CAS  Google Scholar 

  6. Ahmad M, Manzoor K, Ikram S (2019) Chitosan nanocomposites for bone and cartilage regeneration. In: Jamia MI (ed) Applications of nanocomposite materials in dentistry. Woodhead Publishing, New Delhi, pp 307–317

    Google Scholar 

  7. Izzo D, Palazzo B, Scalera F et al (2019) Chitosan scaffolds for cartilage regeneration: influence of different ionic crosslinkers on biomaterial properties. Int J Polym Mater Polym Biomater 68(15):936–945

    CAS  Google Scholar 

  8. Roffi A, Kon E, Perdisa F (2019) A composite chitosan-reinforced scaffold fails to provide osteochondral regeneration. Int J Mol Sci 20(9):2227

    CAS  PubMed Central  Google Scholar 

  9. Wang K, Li J, Li Z et al (2019) Chondrogenic progenitor cells exhibit superiority over mesenchymal stem cells and chondrocytes in platelet-rich plasma scaffold-based cartilage regeneration. Am J Sports Med 47(9):2200–2215

    PubMed  Google Scholar 

  10. Chen K, Li X, Li N et al (2019) Spontaneously formed spheroids from mouse compact bone-derived cells retain highly potent stem cells with enhanced differentiation capability. Stem Cells 2019:1–13

    Google Scholar 

  11. Chen W, Xu Y, Liu Y, Wang Z et al (2019) Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des 179:1–13

    Google Scholar 

  12. Li J, Chen G, Xu X et al (2019a) Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 6(3):129–140

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rogan H, Ilagan F, Yang F (2019) Comparing single cell versus pellet encapsulation of mesenchymal stem cells in three-dimensional hydrogels for cartilage regeneration. Tissue Eng Part A 25:1–27

    Google Scholar 

  14. De Pascale C, Marcello E, Getting SJ et al (2019) Populated collagen hydrogel and polyhydroxyalkanoate composites: novel matrices for cartilage repair and regeneration? Osteoarthr Cartil 27:S432–S433

    Google Scholar 

  15. Baena JM, Jiménez G, López-Ruiz E, Antich C et al (2019) Volume-by-volume bioprinting of chondrocytes-alginate bioinks in high-temperature thermoplastic scaffolds for cartilage regeneration. Exp Biol Med 244(1):13–21

    CAS  Google Scholar 

  16. Farokhi M, Jonidi Shariatzadeh F, Solouk A (2019) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater Polym Biomater 69:1–18

    Google Scholar 

  17. Farokhi M, Mottaghitalab F, Fatahi Y et al (2019) Silk fibroin scaffolds for common cartilage injuries: possibilities for future clinical applications. Eur Polym J 115:251–267

    CAS  Google Scholar 

  18. Lin H, Beck AM, Shimomura K (2019) Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J Tissue Eng Regen Med 2019:1–12

    Google Scholar 

  19. Li J, Yao Q, Xu Y (2019b) Lithium chloride-releasing 3D printed scaffold for enhanced cartilage regeneration. Med Sci Monit 25:4041

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Park IS, Jin RL, Oh HJ et al (2019) Sizable scaffold-free tissue-engineered articular cartilage construct for cartilage defect repair. Artif Organs 43(3):278–287

    CAS  PubMed  Google Scholar 

  21. Sivadas VP, Dhawan S, Babu J (2019) Glutamic acid-based dendritic peptides for scaffold-free cartilage tissue engineering. Acta Biomater 99:196–210

    CAS  PubMed  Google Scholar 

  22. De Moor L, Beyls E, Declercq H (2019) Scaffold free microtissue formation for enhanced cartilage repair. Ann Biomed Eng 48:1–14

    Google Scholar 

  23. Aguilar IN, Olivos DJ III, Brinker A et al (2019) Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: spheroid characterization and osteogenic differentiation. Bioprinting 15:e00050

    PubMed  PubMed Central  Google Scholar 

  24. Breathwaite EK, Weaver JR, Murchison AC et al (2019) Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomed Mater 14(6):065010

    CAS  PubMed  Google Scholar 

  25. Lu Y, Zhang W, Wang J et al (2019) Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 11(2):1–13

    CAS  Google Scholar 

  26. Martini FH, Nath JL, Bartholomew EF (2018) Fundamentals of anatomy & physiology, 11th edn. Pearson Education, Inc, New York

    Google Scholar 

  27. Tortora GJ, Derrickson B (2017) Principles of human anatomy & physiology, 15th edn. Wiley, Milton

    Google Scholar 

  28. Saladin KS, Gan CA, Cushman HN (2018) Anatomy & physiology: the unity of form and function, 8th edn. McGraw-Hill Education, New York

    Google Scholar 

  29. Shier D, Butler J, Lewis R (2016) Hole’s human anatomy & physiology, 14th edn. McGraw-Hill Education, New York

    Google Scholar 

  30. Muriel R, Birgit R, William MK (2019) Cellular senescence in development, regeneration and disease. Development 146:dev151837

    Google Scholar 

  31. Myohara M (2004) Differential tissue development during embryogenesis and regeneration in an annelid. Dev Dyn 231:349–358

    CAS  PubMed  Google Scholar 

  32. Kuhn LT, Liu Y, Boyd NL et al (2014) Developmental-like bone regeneration by human embryonic stem cell-derived mesenchymal cells. Tissue Eng Part A 20(1–2):365–377

    CAS  PubMed  Google Scholar 

  33. Tetsuya E, Susan VB, David M (2004) A stepwise model system for limb regeneration. Dev Biol 270(1):135–145

    Google Scholar 

  34. Angela YC, Vegard FS, Stefanos T et al (2019) Measuring population ageing: an analysis of the global burden of disease study 2017. Lancet Public Health 4(3):e159–e167

    Google Scholar 

  35. Theo V, Abraham DF, Mohsen N et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2163–2196

    Google Scholar 

  36. Malaysia health technology assessment section (MaHTAS) (2013) Quick reference (QR): management of osteoarthritis, 2nd edn. Ministry of Health (MOH), Malaysia

    Google Scholar 

  37. Malaysia Health Technology Assessment Section (MaHTAS) (2013) Clinical practice guidelines (CPG): management of osteoarthritis, 2nd edn. Ministry of Health (MOH), Malaysia

    Google Scholar 

  38. Francis SL, Di Bella C, Wallace GG (2018) Cartilage tissue engineering using stem cells and bioprinting technology–barriers to clinical translation. Front Surg 5:70

    PubMed  PubMed Central  Google Scholar 

  39. Xue K, Zhang X, Gao Z (2019) Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. J Transl Med 17(1):104

    PubMed  PubMed Central  Google Scholar 

  40. Catacchio I, Berardi S, Reale A et al (2013) Evidence for bone marrow adult stem cell plasticity. In: Prancla R(ed) properties, molecular mechanisms, negative aspects, and clinical applications of hematopoietic and mesenchymal stem cells transdifferentiation. Stem Cells Int 2013:1–11

    Google Scholar 

  41. Md Nazir N, Zulkifly AH, Khalid KA et al (2019) Matrix production in chondrocytes transfected with sex determining region Y-box 9 and telomerase reverse transcriptase genes: an in vitro evaluation from monolayer culture to three-dimensional culture. Tissue Eng Regen Med 16:285

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tahir AH, Azhim A, Sha’ban M et al (2017) Chondrocytes-induced SOX5/6/9 and TERT genes for articular cartilage tissue engineering: HYPE or Hope? Trans Persatuan Genetik Malaysia 7:151–160

    Google Scholar 

  43. Ahmad R, Muhammad A, Abdulahi H et al (2017) The application of gene transfer technology in articular cartilage tissue engineering: an insight. TPGM 7:211–216

    Google Scholar 

  44. Mohamed Amin MAI, Azhim A, Mohamed Sideek MA et al (2017) Current trends in gene-enhanced tissue engineering for articular cartilage regeneration in the animal model. Trans Persatuan Genetik Malaysia (TPGM) 7:201–210

    Google Scholar 

  45. Munirah S, Zainul Ibrahim Z, Rozlin AR et al (2014) Exploring the islamic perspective on tissue engineering principles and practice. Comm Publ Ethics 4(2):29–40

    Google Scholar 

  46. Nazir NM, Sha’ban M (2018) Overview of safety and efficacy of non-viral gene transfer in cartilage tissue engineering from the worldview of Islam. Int Med J Malaysia 17:115–123

    Google Scholar 

  47. Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. StemBook, Washington University

    Google Scholar 

  48. Tahir AHMA, Amin MAIM, Azhim A (2018) Evaluation of cartilaginous extracellular matrix production in in vitro “cell-scaffold” construct. In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp 500–504

    Google Scholar 

  49. Munirah S, Samsudin OC, Chen HC et al (2007) Articular cartilage restoration in load-bearing osteochondral defects by autologous chondrocytes-fibrin constructs implantation: an experimental study in sheep. J Bone Joint Surg (Br) 89B:1099–1109

    Google Scholar 

  50. Hazwani A, Sha’ban M, Azhim A (2017) Inflammatory response of bioscaffolds decellularized by sonication treatment. In: International conference for innovation in biomedical engineering and life sciences 2017, pp 183–185

    Google Scholar 

  51. Mohamed Amin MAI, Tahir AHMA, Azhim A et al (2018) Physical properties and biocompatibility of 3D hybrid PLGA based scaffolds. In: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp 480–484

    Google Scholar 

  52. Martín-Martín A, Orduna-Malea E, Thelwall M et al (2018) Google scholar, web of science, and scopus: a systematic comparison of citations in 252 subject categories. J Informet 12(4):1160–1177

    Google Scholar 

  53. Ovsianikov A, Khademhosseini A, Mironov V (2018) The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol 36(4):348–357

    CAS  PubMed  Google Scholar 

  54. He D, Zhao AS, Su H et al (2019) An injectable scaffold based on temperature-responsive hydrogel and factor-loaded nanoparticles for application in vascularization in tissue engineering. J Biomed Mater Res A 107(A):2123–2134

    CAS  PubMed  Google Scholar 

  55. Kelly DC, Raftery RM, Curtin CM et al (2019) Scaffold-based delivery of nucleic acid therapeutics for enhanced bone and cartilage repair. J Orthop Res 37:1671–1680

    PubMed  Google Scholar 

  56. Wen YT, Dai NT, Hsu SH (2019) Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Acta Biomater 88:301–313

    CAS  PubMed  Google Scholar 

  57. Kobayashi J, Kikuchi A, Aoyagi T (2019) Cell sheet tissue engineering: cell sheet preparation, harvesting/manipulation, and transplantation. J Biomed Mater Res A 107(5):955–967

    CAS  PubMed  Google Scholar 

  58. Takahashi H, Okano T (2015) Cell sheet-based tissue engineering for organizing anisotropic TEMPs produced using microfabricated thermoresponsive substrates. Adv Healthc Mater 4(16):2388–2407

    CAS  PubMed  Google Scholar 

  59. Antunes J, Gaspar VM, Ferreira L et al (2019) In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater 94:392–409

    CAS  PubMed  Google Scholar 

  60. Akkouch A, Yu Y, Ozbolat IT (2015) Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication 7(3):031002

    PubMed  Google Scholar 

  61. Yu Y, Moncal KK, Li J et al (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 6(1):28714

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamato M, Okano T (2004) Cell sheet engineering. Mater Today 7(5):42–47

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thanked the Ministry of Education (MOE) Malaysia Transdisciplinary Research Grant Scheme TRGS/1/2016/UIAM/02/8/2 (TRGS16-02-002-0002) under TRGS/1/2016/UIAM/02/8 programme and the Ministry of Energy, Science, Technology, Environment and Climate Change (MESTECC, formerly known as MOSTI) Malaysia Science Fund (SF14-012-0062/06-01-08-SF0238); the Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Kuantan Campus, Pahang, Malaysia; and Tissue Engineering and Regenerative Medicine Research Team, IIUM, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munirah Sha’ban .

Editor information

Editors and Affiliations

Appendix

Appendix

List of biomaterial scaffolds used as an individual or in combination in cartilage tissue engineering experimentation based on 1645 studies starting 1994 to 2017. Note Table (A) natural biomaterials and (B) synthetic biomaterials.

(A) Natural biomaterials

1. Agarose

2. Collagen type I (Integra®) commercial

3. Hyaluronic acid (HYAFF®-11)

4. Fibrin

5. Alginate

6. Collagen I

7. Collagen I/GAG

8. Gelatin

9. Calcium phosphate tribasic

10. Collagen type I

11. Collagen II

12. Hyaluronic acid, alginate (NS) [NS]

13. Silicone rubber membranes coated with type I collagen; ~agarose

14. Atelocollagen I

15. Silk fibroin

16. Calcium polyphosphate

17. Chitosan

18. HYAFF-11; HYAFF-11-S

19. Sodium alginate

20. Methacrylated form of hyaluronan (HA-MA) (hydrogel, cylindrical) [Photocross-linking]

21. Collagen type I (Cellagen™) commercial

22. Self-assembling collagen type I

23. Alginate; agarose; gelatin; fibrin

24. Agarose; alginate; gelatin

25. B-TCP

26. Cartilage ECM

27. Hyaluronic acid methacrylated

28. Bacterial cellulose; collagen type II; alginate

29. Hyaluronan

30. Self-assembled (collagen type II-coated; aggrecan-coated); ~agarose

31. Collagen I; II; III

32. Pellet; ~atelocollagen

33. Fibrinogen

34. Hyaluronic acid;{atelocollagen}

35. Hyaluronic acid (HA) hydrogels (2 wt% 1100 kDa, 2 wt% 350 kDa, 5 wt% 350 kDa, 2 wt% 50 kDa, 5 wt% 50 kDa, 10 wt% 50 kDa; 20 wt% 50 kDa)

36. Pellet; ~collagen

37. Macroporous gelatin-coated microcarrier beads CultiSpher

38. Gelatin (photopolymerisable styrenated gelatin)

39. Alginate beads; agarose

40. CaReS (rat-tail collagen type I); atelocollagen (bovine collagen type I); dermal regeneration template (bovine collagen type I); Chondro-Gide (bovine collagen type I/III); atelocollagen honeycomb small (bovine collagen type I); atelocollagen honeycomb large (bovine collagen type I)

41. Human amniotic membrane (epithelial side of intact HAM (IHE), basement side of denuded HAM (DHB) and stromal side of denuded HAM (DHS))

42. Collagen type I (Resorba®) commercial

43. Collagen

44. ECM (cell-derived)

45. Pellets vitro and vivo; ~alginate gel vivo

46. Micromass; collagen honeycomb

47. Osteochondral cores (cylindrical) [NS]

48. Collagen I (Antema®) commercial

49. Pellet → engineered ECM

50. Collagen type II

51. Alginate hydrogel; agarose hydrogel

52. Hyaluronan biomaterial (HYAFF-11, Fidia) {cylinder} [NS]

53. Alginate bead → coralline hydroxyapatite

54. Hyaluronic acid {hydrogels}

55. Decellularised (cartilage ECM)

56. Collagen I (Helistat®) commercial

57. Chitosan + Arg-Gly-Asp (RGD); chitosan + epidermal growth factor (EGF)

58. Coral

59. Whole blood, agarose

60. Cell sheet → cell plate in culture insert; ~atelocollagen honeycomb-shaped

61. Chitin (di-butyryl-chitin)

62. Alginate beads → calcium phosphate Calcibon®

63. Cellulose

64. Gellan gum

65. Hyaluronic acid HA (0.5, 1 and 2 g)

66. Aragonite matrix

67. Layered agarose hydrogel

68. Chondron ECM

69. Cross-linked methacrylated hyaluronic acid hydrogels (MeHA);{agarose}

70. HA; agarose {gel}

71. Collagen II (recombinant human)

72. Calcium alginate

73. Gelatin, chitosan (cylindrical) [NS]

74. Gellan um;{agarose}

75. Alginate (hydrogel) [NS]; demineralised bone matrix (NS) [3D printing]

76. Atelocollagen

77. Hyaluronic acid (nonwoven mesh) [NS]

78. Decellularised (osteochondral graft)

79. Demineralised joint condyle

80. Alginate beads; ~hydroxyapatite (HA) carrier

81. Collagen type I (CaRes®)

82. Collagen I (CaReS®)

83. Hydroxyapatite, chitin, chitosan (NS) [NS]

84. Collagen type I (Arthro Kinetics Biotechnology)

85. Collagen (Chondro-Gide®)

86. Pellet; cross-linkable hyaluronan hydrogel

87. Decellularised osteochondral explant

88. Gelatin; chitosan

89. Silk fibroin;{hyaluronic acid (HYAFF®-11)}

90. Fibrin glue hydrogel; platelet-rich fibrin glue hydrogel; fibrin glue hydrogel containing heparin-binding delivery system; platelet-rich fibrin glue hydrogel containing heparin-binding delivery system

91. Nonbiomedical and biomedical grade alginates

92. Collagen I (Porcogen™)

93. Sodium alginate (Sea Matrix®)

94. Methacrylated glycol chitosan

95. Collagen type I, collagen type III (disc) [NS]

96. Self-assembled; fibrin

97. Collagen I (Ultrafoam®) commercial

98. Pellet culture; agarose

99. Hyaluronic acid (HA) hydrogel; agarose hydrogel

100. Hyaluronic acid methacrylated; agarose

101. κ-Carrageenan

102. “Hydrogel: (1) soluble rat-tail type I collagen (0.2% w/v) (BD Biosciences, San Jose, CA, USA); (2) type I collagen (0.2%) incorporating transglutaminase (TG)-2 (100 lgml–1) (Sigma); (3) type I collagen (0.2%) incorporating microbial transglutaminase (mTG; 100 lg ml–1) (Ajinomoto Food Ingredients LLC, Chicago, IL); (4) type I collagen (0.2%) incorporating genipin (GP, 0.25 mM) (Wako, Richmond, VA, USA); (5) type I collagen (0.2%) incorporating GP (0.25 mM) and control agarose beads (without heparin) (Sigma); and (6) type I collagen (0.2%) incorporating GP (0.25 mM) and heparin-agarose type I beads (10% weight of heparin/weight of collagen) (Sigma)

103. Sponge-like scaffolds were prepared: (1) porcine type I/III collagen (CI) (0.5% w/v) (Geistlich Biomaterials, Wolhusen, Switzerland); (2) CI (0.5%) additionally supplemented with CS (7% w/w relative to CI) (Sigma Chemical Co., St Louis, MO, USA); and (3) CI (0.5%) additionally supplemented with HS (7% w/w relative to CI) (Sigma)”

104. Cell pellet – collagen type II nanoarchitectured molecules; collagen fibrils (CNFs); collagen spheres (CNPs)

105. Gelatin; chitosan; agarose

106. Decellularised (dermal ECM)

107. Hyaluronic acid (HYAFF®-11); collagen (Bio-Gide®) commercial

108. Self-assembled (agarose mould) → collagen cross-linking via lysyl oxidase (timing)

109. Collagen type I (PureCol®) commercial

110. Bacterial cellulose

111. Pellet culture (aggregate);~micromass (self-assembled) in plate; ~collagen II

112. Devitalised cartilage explant

113. Alginate (beads) [NS]; cell pellet (NS) [NS]; collagen, chitosan (NS) [NS]

114. Alginate bead → scaffold free on b-tricalcium phosphate carriers []

115. Fibrin hydrogel in agarose well; agarose well only

116. Osteochondral cores, agarose (disc) [NS]

117. Extracellular matrix (ECM) by ASCs; ECM by synovium-derived stem cells (SDSCs). The cell in pellet condition

118. TCP

119. Glycerol phosphate

120. Decalcified bone matrix

121. Hyaluronic acid hydrogel

122. Recombinant human collagen type II (Fibrinogen Europe, Helsinki, Finland)

123. PRP

124. Micromass; pellet culture model; vivo~fibrin gel

125. Injectable hydroxypropylmethylcellulose (HPMC) hydrogel

126. Hyaluronic acid methacrylate (HA-MA), chondroitin sulphate methacrylate (CS-MA); (hydrogel) [NS]

127. Collagen type I, collagen type III (NS) [NS]

128. Sulphated alginate

129. Agarose; plasma; whole blood

130. Photocross-linkable gelatin-methacrylamide (Gel-MA); varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA)

131. Human acellular cartilage matrix powders

132. Self-assembled (polyethylene terephthalate (PET)-coated); agarose hydrogel encapsulation

133. Methacrylated gelatin

134. ECM (MSC-derived)

135. Demineralised bone matrix

136. Hybrid organic-inorganic (HOI) material photopolymer ORMOSIL SZ2080; ∗collagen type I membrane

137. Decellularised (meniscus ECM)

138. Alginate; chitosan; fibrin

139. Heparin-conjugated fibrin (gel) [NS]

140. Microcavitary alginate hydrogel (microsphere)

141. Chondroitin sulphate methacrylate

142. Micromass cell pellets; alginate hydrogels

143. 45S5 Bioglass®

144. Graphene oxide (NS) [NS]

145. Amniotic membrane

146. Hyaluronic acid (NS) [NS]

147. Collagen type I, collagen type II, hydroxyapatite (cylindrical) [NS]

148. Porcine articular cartilage extracellular matrix (ACECM) (disc) [directional crystallisation and freeze-drying]

149. Cartilage ECM powder

150. Self-assembled; ~alginate

151. Pellet; ECM hydrogel

152. RGD-immobilised microcavitary alginate hydrogels; microcavitary alginate hydrogel

153. Gelatin methacryloyl

154. Gelatin methacrylamide (GelMA), hyaluronic acid methacrylate (HAMA), alginate (ALG), hydroxyapatite paste (HAP) (hydrogel) [3D printing]

155. Chitosan; alginate; collagen I

156. Demineralised cancellous bone

157. Human dermal fibroblast-derived ECM (hECM)

158. Decellularised (cartilage ECM) and methacrylated; methacrylated gelatin

159. Calcium-cobalt alginate

160. Devitalised cartilage

161. Transglutaminase-cross-linked hyaluronan hydrogels (HA-TG); alginate

162. Pellet; alginate bead; {monolayer}

163. ECM

164. Alginate; agarose

165. Decellularised (bone matrix) and demineralised

166. Gelatin methacrylamide; polyacrylamide

167. Pellets; agarose

168. Monomeric type I and type II collagen

169. Sodium alginate, collagen type I, collagen type II, chondroitin sulphate (hydrogel) [NS]

(B) Synthetic biomaterials

1. 2-Hydroxyethyl methacrylate-L-lactate–dextran (HEMA–LLA–D)

2. B-TCP

3. Calcium carbonate (Calcibon®)

4. Calcium polyphosphate

5. Cell pellet; ~PLGA

6. Collagen-like proteins

7. Compact polyelectrolyte complexes (CoPECs)

8. Elastin-like polypeptide (ELP)

9. Hyaluronan benzyl ester (disc) [NS]

10. Injectable PLGA microsphere

11. Macromers of PEG-caprolactone (PEG-CAP) endcapped with norbornene (PEG-CAP-NOR)

12. Nonporous microcarriers poly(lactic-co-glycolic acid) (PLGA); porous PLGA; amine-functionalised PLGA-NH2

13. Nonwoven PGA fibres

14. Nonwoven polyethylene terephthalate fibre

15. NS polycarbonate membrane

16. Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo (trimethylene carbonate) diacrylate (TPT-DA)

17. OPF

18. PBT

19. PCL

20. PEG

21. PEG hydrogel; PLGA microfibers

22. PEGDA

23. PEGDM

24. PEG–oligo(lactic acid) dimethacrylate PEG–LA-DM

25. Peptide-modified PEGDA (hydrogel) [NS]

26. PGA

27. PGA; PLGA (disc) [NS]

28. PGA; PLLA; PDLLA; PLGA; PCL

29. PGA-PLA (Ethisorb 210); poly-L-lactic acid

30. PGLA (polyglycollic-co-lactic acid)

31. PHBV (3-hydroxybutrate-co-3-hydroxyvalerate)

32. PLA

33. PLA (OPLA®)

34. PLA; PGA; PLGA

35. PLAG

36. PLCL

37. PLG

38. PLGA

39. PLGA, poly(ethy1ene oxide)-dimethacrylate, poly(ethy-1-ene glycol) (NS) [double emulsion]

40. PLGA; polydioxanone (PDO)

41. PLGA-fleece (darts) [NS]

42. PLLA

43. PLLA (NS) [electrospinning]

44. PLLA (RESOMERL207S)

45. PLLA; PLGA(L); PLGA(H); PLA/CL; PDLA

46. PLLA; PGA; PLGA; PLAO3

47. Poly(1,8-octanediol citrate)

48. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid (NaAMPS)-co-N,N-dimethylacrylamide(DMAAm))

49. Poly(2-hydroxyethyl methacrylate)

50. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)

51. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB)

52. Poly(ethyl acrylate-co-hydroxyethyl acrylate) [P(EA-co-HEA)]

53. Poly(ethylene oxide) dimethacrylate (PEODM)

54. Poly(ethylene terephthalate) (PET)

55. Poly(glycerol sebacate) (PGS)

56. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)

57. Poly(lactic-glycolic acid) (PLGA)

58. Poly(L-lactide-co-e-caprolactone) (PLCL) (NS) [supercritical fluid foaming; solvent-casting and salt leaching method]

59. Poly(L-lactide-co-e-caprolactone) (PLCL) {sponge} [supercritical fluid foaming; solvent-casting and salt leaching method]

60. Poly(L-lactide-co-e-caprolactone) (PLCL); articular cartilage explant (control)

61. Poly(N-isopropylacrylamide)-g-methylcellulose (PNIPAAm-g-MC) thermoreversible hydrogel

62. Poly(N-isopropylacrylamide-co-acrylic acid) (p(NiPAAm-co-AAc)) (hydrogel) [NS]

63. Poly(N-isopropylacryl-amide-co-acrylic acid) thermoreversible gel

64. Poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)]; {agarose}; {alginate}

65. Poly(urethane urea) Artelon®

66. Poly(γ-benzyl-L-glutamate) (PBLG)

67. Poly(ε-caprolactone) (PCL) nanofibrous electrospinning

68. Poly3-hydroxybutyrate4-hydroxybutyrate (P34HB)

69. Polycaprolactone; poly(L-lactide); poly(lactic-co-glycolic acid); polyurethane

70. Polydimethylsiloxane (PDMS)

71. Polydimethylsiloxane (PDMS) concave microwells

72. Polyester poly(3-hydroxybutyrate) (PHB) film

73. Polyethylene glycol diacrylate

74. Polyglycolic acid (PGA)

75. Polyglycolic acid (PGA); cartilage explant

76. Polyglycolic acid (PGA); poly(glycolic acid-e-caprolactone) (PGCL); poly(l-lactic acid-glycolic acid) (PLGA), poly(l-lactic acid-e-caprolactone;75:25 (w/w)) [P(LA-CL)25]; poly-e-caprolactone (tetrabutoxy titanium) [PCL(Ti)]; fullerene C-60 dimalonic acid (DMA)

77. PolyHIPE polymer (PHP)

78. Polyhydroxyalkanoate (PHA) = poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxy-10-38 undecenoate] (PHBU)

79. Poly-L,D-lactic acid (PLDLA)

80. Polylactic acid (PLA); Acrylonitrile butadiene styrene (ABS) (NS) [3D printing]

81. Polylactic acid poly-e-caprolactone (PLCL)

82. Polylactic acid-polyglycolic acid (PLGA)

83. Polylactic glycolic acid (PLGA)

84. Polylactic glycolic acid (PLGA)

85. “Polylactic glycolic

86. acid (3D-PLGA) (NS) [NS]”

87. Polylactide-polyglycolic acid (PLGA)

88. Polylactide-co-glycolide (PLGA) 85:15 microspheres/biodegradable hydrogel

89. Poly-L-lactic acid (PLLA)

90. Poly-L-lactic acid (PLLA) microsphere; poly-L-lactic acid (PLLA) microsphere + tripeptide Arg-Gly-Asp

91. Polymer solutions of poly(ethylene) oxide diacrylate

92. Polyurethane

93. Polyurethane (PU); poly(L/DL-lactide) (PLA)-control

94. Polyurethane/poly(L-lactide-co-D, llactide) (PU/PLDL) [6:4; 5:5; 8:2]

95. Poly-ε-caprolactone (NS) [electrospinning]

96. PuraMatrix (hydrogel) [NS]

97. PVA

98. Recombinant streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding and hyaluronic acid-binding peptide sequences (HIHA) [nonviral bacteria]. ScrMMP7-HIHA-Scl2, MMP7-HIHAScl2, MMP7:ACAN(75:25)-HIHA-Scl2, MMP7:ACAN(50:50)-HIHAScl2, MMP7:ACAN(25:75)-HIHA-Scl2 and ACAN-HIHA-Scl2 hydrogels.

99. Self-assembling peptide (KLD) AcN-(KLDL)3-CNH2

100. Self-assembling peptide (KLD); cartilage explants

101. Self-assembling peptide (KLDL)

102. Self-assembling peptide (RADA)4

103. Self-assembling peptide AcN–(KLDL)3–CNH2 hydrogels;{agarose}

104. Self-assembly aggrecan (0.6% w/w), aggrecan–HA (0.6% w/w) and HA (1% w/w) solutions; ~type II collagen/aggrecan; ~PVA hydrogel

105. Silanised hydroxypropyl methylcellulose (Si-HPMC) hydrogel [E4M®]

106. Silated hydroxypropyl methylcellulose (hydrogel) [NS]

107. Silk; collagen; gelatin

108. Silk-elastin-like-protein polymer SELP-47 K

109. Sodium cellulose sulphate; polydiallyl dimethyl ammonium chloride (NS) [NS]

110. Tantalum

111. Tetramethacrylate prepolymer

112. Thermoreversible gelation polymer [poly(N-isopropylacrylamide-co-n-butyl methacrylate) (poly(NIPAAm-co-BMA))]

113. Titanium

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sha’ban, M., Ahmad Radzi, M.A. (2020). Scaffolds for Cartilage Regeneration: To Use or Not to Use?. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_7

Download citation

Publish with us

Policies and ethics