Skip to main content

Probe Machine Based Computing Model for Solving Satisfiability Problem

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1160))

  • 881 Accesses

Abstract

Probe Machine (PM) is a recently reported theoretical model with massive parallelism. Particularly, Turing Machine (TM) had been proven to be the special case of PM. The paper proposed a PM based computing model for satisfiability problem. PM is capable of searching pairs of data fiber that are complementary to pre-devised probes, leading to the connection of pairs of data in parallel. We encoded the assignment to variables in the given 3-SAT formula into data fibers and devised probes between pairs of data fiber, the unique satisfying assignment of a hard 3-SAT formula could be generated within just one step of probe operation. More generally, for an arbitrary 3-SAT formula with variables and clauses, we presented a method for deciding the satisfiability using the concept of potential probe. Complexity analysis shows the encoding complexity and time complexity of the proposed model are o(n) and o(1), respectively. The distinguishing characteristics of the proposed model lie in two aspects. On one hand, solution to NP-complete problem was generated in just one step of probe operation rather than found in vast solution space. On the other hand, the proposed model is highly parallel. Most important of all, the parallelism increases with problem size. This marks a giant step in computational theory. With the parallel search capability inherited in PM, the size of NP-complete search problems is expected to be increased further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  Google Scholar 

  2. Sobeyko, O., Monch, L.: Heuristic approaches for scheduling jobs in large-scale flexible job shops. Comput. Oper. Res. 68, 97–109 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cechlrov, K., Fleiner, T., Manlove, D.F., McBride, I.: Stable matchings of teachers to schools. Theoret. Comput. Sci. 653, 15–25 (2016)

    Article  MathSciNet  Google Scholar 

  4. Lozin, V.V., Malyshev, D.S.: Vertex coloring of graphs with few obstructions. Discrete Appl. Math. 216, 273–280 (2015)

    Article  MathSciNet  Google Scholar 

  5. Malyshev, D.S., Lobanova, O.O.: Two complexity results for the vertex coloring problem. Discrete Appl. Math. 219, 158–166 (2016)

    Article  MathSciNet  Google Scholar 

  6. Li, H., Bai, Y., He, W., Sun, Q.: Vertex-distinguishing proper arc colorings of digraphs. Discrete Appl. Math. 209, 276–286 (2016)

    Article  MathSciNet  Google Scholar 

  7. Karpiski, M.: Vertex 2-coloring without monochromatic cycles of fixed size is NP-complete. Theor. Comput. Sci. 659, 88–94 (2017)

    Article  MathSciNet  Google Scholar 

  8. Shitov, Y.: A tractable NP-completeness proof for the two-coloring without monochromatic cycles of fixed length. Theor. Comput. Sci. 674, 116–118 (2017)

    Article  MathSciNet  Google Scholar 

  9. Borrero, J.S., Gillen, C., Prokopyev, O.A.: A simple technique to improve linearized reformulations of fractional (hyperbolic) 0–1 programming problems. Oper. Res. Lett. 44(4), 479–486 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kodama, A., Nishi, T.: Petri net representation and reachability analysis of 0–1 integer linear programming problems. Inf. Sci. 400, 157–172 (2017)

    Article  Google Scholar 

  11. Yan, K., Ryoo, H.S.: 0–1 multilinear programming as a unifying theory for LAD pattern generation. Discrete Appl. Math. 218, 21–39 (2017)

    Article  MathSciNet  Google Scholar 

  12. Clarke, E., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_9

    Chapter  MATH  Google Scholar 

  13. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_6

    Chapter  Google Scholar 

  14. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

    Chapter  Google Scholar 

  15. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  16. Braich, R.S., Chelyapov, N., Johnson, C.P., Rothemund, W.K., Adleman, L.M.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  17. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genet. Program Evolvable Mach. 4(2), 123–137 (2003)

    Article  Google Scholar 

  18. Yoshida, H.: Solution to 3-SAT by breadth first search. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 54, 9–20 (2000)

    Article  MathSciNet  Google Scholar 

  19. Yang, C.N., Yang, C.B.: A DNA solution of SAT problem by a modified sticker model. BioSystems 81(1), 1–9 (2005)

    Article  Google Scholar 

  20. Wang, X.L., Bao, Z.M., Hu, J.J., Wang, S., Zhan, A.B.: Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction. BioSystems 91(1), 117–125 (2008)

    Article  Google Scholar 

  21. Song, B.S., Prez-Jimnez, M.J., Pan, L.Q.: An efficient time-free solution to SAT problem by P systems with proteins on membranes. J. Comput. Syst. Sci. 82(6), 1090–1099 (2016)

    Article  MathSciNet  Google Scholar 

  22. Marques-Silva, J.P., Sakallah, K.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506C521 (1999)

    Article  MathSciNet  Google Scholar 

  23. Sinz, C., Iser, M.: Problem-sensitive restart heuristics for the DPLL procedure. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 356–362. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_33

    Chapter  Google Scholar 

  24. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In: Proceedings of IJCAI, pp. 248–253 (2001)

    Google Scholar 

  25. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

    Article  Google Scholar 

  26. Dal Palu, A., Dovier, A., Formisano, A., Pontelli, E.: CUD@SAT: SAT solving on GPUS. J. Exp. Theor. Artif. Intell. 27(3), 293–316 (2015)

    Article  Google Scholar 

  27. Lamya, A,G., Aziza, I.H., Hanafy, M.A.: Parallelization of unit propagation algorithm for SAT-based ATPG of digital circuits. In: Proceedings of ICM, pp. 184–188 (2016)

    Google Scholar 

  28. Sohanghpurwala, A.A., Hassan, M.W., Athanas, P.: Hardware accelerated SAT solvers—a survey. J. Parallel Distrib. Comput. 106, 170–184 (2017)

    Article  Google Scholar 

  29. Kautz, H., Selman, B.: The state of SAT. Discrete Appl. Math. 155(12), 1514–1524 (2007)

    Article  MathSciNet  Google Scholar 

  30. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic ‘phase transitions’. Nature 400, 133–137 (1999)

    Article  MathSciNet  Google Scholar 

  31. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Gener. Comput. 20(3), 263–277 (2002). https://doi.org/10.1007/BF03037360

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank every author appeared in the references. This work was supported by National Natural Science Foundation of China [61672001, 61702008], Natural Science Foundation of Anhui University [KJ2019A0538], and [18-163-ZT-005-009-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, J., Yin, Z., Yang, J., Geng, X., Zhang, Q. (2020). Probe Machine Based Computing Model for Solving Satisfiability Problem. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1160. Springer, Singapore. https://doi.org/10.1007/978-981-15-3415-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3415-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3414-0

  • Online ISBN: 978-981-15-3415-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics