Skip to main content

The Need for Engineering Antimicrobial Surfaces

  • Chapter
  • First Online:
Engineered Antimicrobial Surfaces

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 382 Accesses

Abstract

The increasing incidences of life-threatening infectious diseases call for the development of antimicrobial materials and coating in every area of life. This chapters discusses the current scenario of infectious bacteria, their resistance to multiple drugs, and a serious lack of development of new antibiotics. The various techniques to produce effective antimicrobials and the need for multitargeted activity of antimicrobials is also discussed. Furthermore, it is suggested that the use of surface engineering and nanomaterials can significantly improve the chances of combating multiple drug-resistant strains of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2018) Deaths by cause, age, sex, by country and by region. Available via World Health Organisation. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.2000-2016

  2. French G (2010) The continuing crisis in antibiotic resistance. Int J Antimicrob Agents 36:S3–S7

    Article  CAS  Google Scholar 

  3. WHO (2017) World Health Organization (WHO) publishes list of bacteria for which new antibiotics are urgently needed (2017)

    Google Scholar 

  4. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  5. Thomas JG, Litton I, Rinde H (2005) Economic impact of biofilms on treatment costs. In: Biofilms, infection, and antimicrobial therapy. CRC Press, pp 39–56

    Google Scholar 

  6. Abdullahi UF, Igwenagu E, Mu’azu A, Aliyu S, Umar MI (2016) Intrigues of biofilm: a perspective in veterinary medicine. Vet World 9(1):12

    Google Scholar 

  7. Bowler PG (2018) Antibiotic resistance and biofilm tolerance: a combined threat in the treatment of chronic infections. J Wound Care 27(5):273–277

    Article  Google Scholar 

  8. Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu Y-W, Tang Z, Xu F-J (2018) Antimicrobial and antifouling polymeric agents for surface functionalization of medical implants. Biomacromol 19(7):2805–2811

    Article  CAS  Google Scholar 

  9. Rauner N, Mueller C, Ring S, Boehle S, Strassburg A, Schoeneweiss C, Wasner M, Tiller JC (2018) A coating that combines lotus-effect and contact-active antimicrobial properties on silicone. Adv Func Mater 28(29):1801248

    Article  CAS  Google Scholar 

  10. Van Loosdrecht M, Lyklema J, Norde W, Schraa G, Zehnder A (1987) The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol 53(8):1893–1897

    Article  Google Scholar 

  11. Van der Westen R, Sjollema J, Molenaar R, Sharma PK, Van der Mei HC, Busscher HJ (2018) Floating and tether-coupled adhesion of bacteria to hydrophobic and hydrophilic surfaces. Langmuir 34(17):4937–4944

    Article  CAS  Google Scholar 

  12. Schubert A, Wassmann T, Holtappels M, Kurbad O, Krohn S, BĂĽrgers R (2019) Predictability of microbial adhesion to dental materials by roughness parameters. Coatings 9(7):456

    Article  CAS  Google Scholar 

  13. Andreotti AM, De Sousa CA, Goiato MC, da Silva EVF, Duque C, Moreno A, Dos Santos DM (2018) In vitro evaluation of microbial adhesion on the different surface roughness of acrylic resin specific for ocular prosthesis. Eur J Dent 12(2):176

    Article  Google Scholar 

  14. Idumah CI, Hassan A, Ihuoma DE (2019) Recently emerging trends in polymer nanocomposites packaging materials. Polymer-Plast Technol Mater 58(10):1054–1109

    Article  CAS  Google Scholar 

  15. Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46(1):90–97

    Article  CAS  Google Scholar 

  16. Yuan H, Zhang X, Jiang Z, Chen X, Zhang X (2018) Quantitative criterion to predict cell adhesion by identifying dominant interaction between microorganisms and abiotic surfaces. Langmuir 35(9):3524–3533

    Article  CAS  Google Scholar 

  17. Mello TP, Oliveira SS, Frasés S, Branquinha MH, Santos AL (2018) Surface properties, adhesion and biofilm formation on different surfaces by Scedosporium spp. and Lomentospora prolificans. Biofouling 34(7):800–814

    Google Scholar 

  18. Zou S, Wei Z, Hu Y, Deng Y, Tong Z, Wang C (2014) Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polym Chem 5(14):4227–4234

    Article  CAS  Google Scholar 

  19. Shirbin SJ, Lam SJ, Chan NJ-A, Ozmen MM, Fu Q, O’Brien-Simpson N, Reynolds EC, Qiao GG (2016) Polypeptide-based macroporous cryogels with inherent antimicrobial properties: the importance of a macroporous structure. ACS Macro Lett 5(5):552–557

    Article  CAS  Google Scholar 

  20. Tan K, Obendorf SK (2007) Development of an antimicrobial microporous polyurethane membrane. J Membr Sci 289(1–2):199–209

    Article  CAS  Google Scholar 

  21. Hill BR, Watson Sr TF, Triplett BL (1991) Antimicrobial microporous coating. Google Patents

    Google Scholar 

  22. Choi BG, Park HS (2012) Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C 116(5):3207–3211

    Article  CAS  Google Scholar 

  23. Díaz C, Schilardi P, Salvarezza R, Lorenzo Fernández, de Mele M (2007) Nano/microscale order affects the early stages of biofilm formation on metal surfaces. Langmuir 23(22):11206–11210

    Article  CAS  Google Scholar 

  24. Preedy E, Perni S, Nipiĉ D, Bohinc K, Prokopovich P (2014) Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir 30(31):9466–9476

    Google Scholar 

  25. Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7(1):55–71

    Article  CAS  Google Scholar 

  26. Atefyekta S, Ercan B, Karlsson J, Taylor E, Chung S, Webster TJ, Andersson M (2016) Antimicrobial performance of Mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomed 11:977

    CAS  Google Scholar 

  27. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028

    Article  CAS  Google Scholar 

  28. Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C (2019) Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater 83:37–54

    Article  CAS  Google Scholar 

  29. Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304

    Article  CAS  Google Scholar 

  30. Ping X, Wang M, Xuewu G (2011) Surface modification of poly (ethylene terephthalate) (PET) film by gamma-ray induced grafting of poly (acrylic acid) and its application in antibacterial hybrid film. Radiat Phys Chem 80(4):567–572

    Article  CAS  Google Scholar 

  31. Chung Y-C, Wang H-L, Chen Y-M, Li S-L (2003) Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Biores Technol 88(3):179–184

    Article  CAS  Google Scholar 

  32. Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567

    Article  Google Scholar 

  33. Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40(12):1014–1019

    Article  CAS  Google Scholar 

  34. Jung EJ, Youn DK, Lee SH, No HK, Ha JG, Prinyawiwatkul W (2010) Antibacterial activity of chitosans with different degrees of deacetylation and viscosities. Int J Food Sci Technol 45(4):676–682

    Article  CAS  Google Scholar 

  35. Shan B, Cai Y-Z, Brooks JD, Corke H (2007) Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem 55(14):5484–5490

    Article  CAS  Google Scholar 

  36. Krishnamoorthy K, Veerapandian M, Zhang L-H, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116(32):17280–17287

    Article  CAS  Google Scholar 

  37. Brown DG, May-Dracka TL, Gagnon MM, Tommasi R (2014) Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J Med Chem 57(23):10144–10161

    Article  CAS  Google Scholar 

  38. Krishnamoorthy G, Leus IV, Weeks JW, Wolloscheck D, Rybenkov VV, Zgurskaya HI (2017) Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into Gram-negative bacteria. MBio 8(5):e01172–e01117

    Article  CAS  Google Scholar 

  39. de Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV (2014) Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiol 14(1):118

    Article  Google Scholar 

  40. Bogdanos DP, Sakkas LI (2019) Infections: viruses and bacteria. In: Mosaic of autoimmunity. Elsevier, pp 203–213

    Google Scholar 

  41. Bolduc J, Nagel C, Li J, Hanson C, Fernholz P (2019) Performic acid biofilm prevention for industrial CO2 scrubbers. Google Patents

    Google Scholar 

  42. Gustavsson R, Mandenius C-F, Löfgren S, Scheper T, Lindner P (2019) In situ microscopy as online tool for detecting microbial contaminations in cell culture. J Biotechnol 296:53–60

    Article  CAS  Google Scholar 

  43. White BP, Patel S, Tsui J, Chastain DB (2019) Adding double carbapenem therapy to the armamentarium against carbapenem-resistant Enterobacteriaceae bloodstream infections. Infect Dis 51(3):161–167

    Article  CAS  Google Scholar 

  44. Baker S, Perianova OV (2019) Bio-nanobactericides: an emanating class of nanoparticles towards combating multi-drug resistant pathogens. SN Appl Sci 1(7):699

    Article  CAS  Google Scholar 

  45. Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, Ki M-H, Lee BL, Jung Y, Yoo J-W (2019) Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics 11(5):236

    Article  CAS  Google Scholar 

  46. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR (2019) Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol 10

    Google Scholar 

  47. Post S, Shapiro J, Wuest W (2019) Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. MedChemComm

    Google Scholar 

  48. Zhen X, Lundborg CS, Sun X, Hu X, Dong H (2019) Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob Resist Infect Control 8(1):1–23

    Article  Google Scholar 

  49. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int

    Google Scholar 

  50. Huang X, Chen G, Pan J, Chen X, Huang N, Wang X, Liu J (2016) Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. J Mater Chem B 4(37):6258–6270

    Article  CAS  Google Scholar 

  51. Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal C (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355

    Article  CAS  Google Scholar 

  52. Bellio P, Luzi C, Mancini A, Cracchiolo S, Passacantando M, Di Pietro L, Perilli M, Amicosante G, Santucci S, Celenza G (2018) Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability. Biochimica et Biophysica Acta (BBA)-Biomembranes 1860(11):2428–2435

    Google Scholar 

  53. Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C (2019) Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 192:551–559

    Article  CAS  Google Scholar 

  54. Tattevin P, Flécher E, Auffret V, Leclercq C, Boulé S, Vincentelli A, Dambrin C, Delmas C, Barandon L, Veniard V (2019) Risk factors and prognostic impact of left ventricular assist device-associated infections. Am Heart J 214:69–76

    Article  Google Scholar 

  55. Chen J, Howell C, Haller CA, Patel MS, Ayala P, Moravec KA, Dai E, Liu L, Sotiri I, Aizenberg M (2017) An immobilized liquid interface prevents device associated bacterial infection in vivo. Biomaterials 113:80–92

    Article  CAS  Google Scholar 

  56. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heure O (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29

    Article  CAS  Google Scholar 

  57. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277

    Google Scholar 

  58. Costa-Gouveia J, Ainsa JA, Brodin P, Lucia A (2017) How can nanoparticles contribute to antituberculosis therapy? Drug Discov Today 22(3):600–607

    Article  CAS  Google Scholar 

  59. Rai M, Ingle AP, Pandit R, Paralikar P, Gupta I, Chaud MV, dos Santos CA (2017) Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int J Pharm 532(1):139–148

    Article  CAS  Google Scholar 

  60. Khan ST, Musarrat J, Al-Khedhairy AA (2016) Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B 146:70–83

    Article  CAS  Google Scholar 

  61. Parham S, Wicaksono DH, Bagherbaigi S, Lee SL, Nur H (2016) Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chin Chem Soc 63(4):385–393

    Article  CAS  Google Scholar 

  62. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Amjad Kamal M (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18(2):120–128

    Article  CAS  Google Scholar 

  63. Zheng K, Setyawati MI, Leong DT, Xie J (2017) Antimicrobial gold nanoclusters. ACS Nano 11(7):6904–6910

    Article  CAS  Google Scholar 

  64. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874

    Article  CAS  Google Scholar 

  65. Li S, Wang E, Tian C, Mao B, Kang Z, Li Q, Sun G (2008) Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties. J Solid State Chem 181(7):1650–1658

    Article  CAS  Google Scholar 

  66. Tung LM, Cong NX, Huy LT, Lan NT, Phan VN, Hoa NQ, Vinh LK, Thinh NV, Tai LT, Mølhave K (2016) Synthesis, characterizations of superparamagnetic Fe3O4–Ag hybrid nanoparticles and their application for highly effective bacteria inactivation. J Nanosci Nanotechnol 16(6):5902–5912

    Article  CAS  Google Scholar 

  67. Zaharia A, Muşat V, Ghisman VP, Baroiu N (2016) Antimicrobial hybrid biocompatible materials based on acrylic copolymers modified with (Ag) ZnO/chitosan composite nanoparticles. Eur Polymer J 84:550–564

    Article  CAS  Google Scholar 

  68. Rezić I, Haramina T, Rezić T (2017) Metal nanoparticles and carbon nanotubes—perfect antimicrobial nano-fillers in polymer-based food packaging materials. In: Food packaging. Elsevier, pp 497–532

    Google Scholar 

  69. Maas M (2016) Carbon nanomaterials as antibacterial colloids. Materials 9(8):617

    Article  CAS  Google Scholar 

  70. Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19

    CAS  Google Scholar 

  71. Moorcroft SC, Jayne DG, Evans SD, Ong ZY (2018) Stimuli-responsive release of antimicrobials using hybrid inorganic nanoparticle-associated drug-delivery systems. Macromol Biosci 18(12):1800207

    Article  CAS  Google Scholar 

  72. Zheng K, Setyawati MI, Lim T-P, Leong DT, Xie J (2016) Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano 10(8):7934–7942

    Article  CAS  Google Scholar 

  73. Snigdha S, Rahul M, Kalarikkal N, Thomas S, Radhakrishnan E (2019) Poly (ε-caprolactone) microsphere decorated with Nano-ZnO based phytoformulation: a promising antimicrobial agent. J Inorg Organomet Polymers Mater 1–11

    Google Scholar 

  74. Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I (2017) Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol 102:60–66

    Article  CAS  Google Scholar 

  75. Senthilkumar R, Bhuvaneshwari V, Ranjithkumar R, Sathiyavimal S, Malayaman V, Chandarshekar B (2017) Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials. Int J Biol Macromol 104:1746–1752

    Article  CAS  Google Scholar 

  76. Xue J, Niu Y, Gong M, Shi R, Chen D, Zhang L, Lvov Y (2015) Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano 9(2):1600–1612

    Article  CAS  Google Scholar 

  77. Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R (2019) Antimicrobial applications of clay nanotube-based composites. Nanomaterials 9(5):708

    Article  CAS  Google Scholar 

  78. Reddy AB, Manjula B, Jayaramudu T, Sadiku E, Babu PA, Selvam SP (2016) 5-Fluorouracil loaded chitosan–PVA/Na+ MMT nanocomposite films for drug release and antimicrobial activity. Nano-micro Lett 8(3):260–269

    Article  CAS  Google Scholar 

  79. Rapacz-Kmita A, Bućko M, Stodolak-Zych E, Mikołajczyk M, Dudek P, Trybus M (2017) Characterisation, in vitro release study, and antibacterial activity of montmorillonite-gentamicin complex material. Mater Sci Eng C 70:471–478

    Article  CAS  Google Scholar 

  80. Zhang L, Chen J, Yu W, Zhao Q, Liu J (2018) Antimicrobial nanocomposites prepared from montmorillonite/Ag. J Nanomat

    Google Scholar 

  81. Pielichowski K (2016) Modern polymeric materials for environmental applications

    Google Scholar 

  82. Al-Samhan M, Samuel J, Al-Attar F, Abraham G (2017) Comparative effects of MMT clay modified with two different cationic surfactants on the thermal and rheological properties of polypropylene nanocomposites. Int J Polymer Sci

    Google Scholar 

  83. Edraki M, Zaarei D (2018) Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J Green Chem 2(3):171–280, 189–200

    Google Scholar 

  84. Hu C-H, Xia M-S (2006) Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci 31(3–4):180–184

    Article  CAS  Google Scholar 

  85. Yan Y, Li C, Wu H, Du J, Feng J, Zhang J, Huang L, Tan S, Shi Q-S (2019) Montmorillonite-modified reduced graphene oxide stabilizes copper nanoparticles and enhances bacterial adsorption and antibacterial activity. ACS Appl Bio Mater

    Google Scholar 

  86. Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682

    Article  CAS  Google Scholar 

  87. Liu H, Brinson LC (2008) Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos Sci Technol 68(6):1502–1512

    Article  CAS  Google Scholar 

  88. Nigmatullin R, Gao F, Konovalova V (2008) Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci 43(17):5728–5733

    Article  CAS  Google Scholar 

  89. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116

    Article  CAS  Google Scholar 

  90. Cloete TE (2003) Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegrad 51(4):277–282

    Article  CAS  Google Scholar 

  91. Ji J, Zhang W (2009) Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds. J Biomed Mater Res Part A: Off J Soc Biomaterials, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 88(2):448–453

    Article  CAS  Google Scholar 

  92. Abdollahi M, Damirchi S, Shafafi M, Rezaei M, Ariaii P (2019) Carboxymethyl cellulose-agar biocomposite film activated with summer savory essential oil as an antimicrobial agent. Int J Biol Macromol 126:561–568

    Article  CAS  Google Scholar 

  93. Joo SH, Aggarwal S (2018) Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. J Environ Manage 225:62–74

    Article  CAS  Google Scholar 

  94. Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ (2019) Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 48(2):428–446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the facilities provided by the International and Inter University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, School of Pure and Applied Physics, and School of Biosciences, Mahatma Gandhi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Snigdha, S., Kalarikkal, N., Thomas, S., Radhakrishnan, E.K. (2020). The Need for Engineering Antimicrobial Surfaces. In: Snigdha, S., Thomas, S., Radhakrishnan, E., Kalarikkal, N. (eds) Engineered Antimicrobial Surfaces. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4630-3_1

Download citation

Publish with us

Policies and ethics