Skip to main content

Abstract

Increased engineered nanomaterial production, combined with widespread use and worldwide distribution, have increased the likelihood of occupational exposure. Considering that engineered nanomaterials have additional toxicological concerns relative to their larger material forms, there exists a clear need to develop, implement, and apply an adequate strategy for occupational risk assessment and management. Unfortunately, a thorough evaluation of pertinent engineered nanomaterial properties cannot be obtained using a single instrument or analytical technique. Therefore, it is recommended that the collection and characterization of engineered nanomaterials should be performed via a multifaceted approach involving the use of multiple complementary sampling tools and analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leso V, Fontana L, Mauriello MA, et al. Occupational risk assessment of engineered nanomaterials: limits, challenges and opportunities. Curr Nanosci. 2017;13:55–78.

    CAS  Google Scholar 

  2. Iavicoli I, Fontana L, Pingue P, et al. Assessment of occupational exposure to engineered nanomaterials in research laboratories using personal monitors. Sci Total Environ. 2018;627:689–702.

    CAS  PubMed  Google Scholar 

  3. National Institute for Occupational Safety and Health (NIOSH) (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta.

    Google Scholar 

  4. Eastlake AC, Beaucham C, Martinez KF, et al. Refinement of the nanoparticle emission assessment technique into the nanomaterial exposure assessment technique (NEAT 2.0). J Occup Environ Hyg. 2016;13:708–17.

    PubMed  PubMed Central  Google Scholar 

  5. National Institute for Occupational Safety and Health (NIOSH). Current intelligence bulletin 63: occupational exposure to titanium dioxide. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2011-160; 2011.

    Google Scholar 

  6. National Institute for Occupational Safety and Health (NIOSH). Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. 2013. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2013-145; 2013.

    Google Scholar 

  7. National Institute for Occupational Safety and Health (NIOSH). Revised Draft NIOSH Current Intelligence Bulletin: Health Effects of Occupational Exposure to Silver Nanomaterials. 2018. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH); 2018.. https://www.regulations.gov/docket?D=CDC-2016-0001. Accessed 12 Apr 2019

    Google Scholar 

  8. Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008;3:423–8.

    CAS  PubMed  Google Scholar 

  9. Grassian VH, O’shaughnessy PT, Adamcakova-Dodd A, et al. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 2007;115:397–402.

    CAS  PubMed  Google Scholar 

  10. Lam CW, James JT, McCluskey R, et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2004;77:126–34.

    CAS  PubMed  Google Scholar 

  11. Oberdorster G. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Inhal Toxicol. 1996;8(Suppl):73–89.

    PubMed  Google Scholar 

  12. Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289:L698–708.

    CAS  Google Scholar 

  13. Shvedova AA, Fabisiak JP, Kisin ER, et al. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol. 2008;38:579–90.

    CAS  PubMed  Google Scholar 

  14. Oomen AG, Steinhäuser KG, Bleeker EAJ, et al. Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact. 2018;9:1–13.

    Google Scholar 

  15. National Research Council (NRC). Risk Assessment in the Federal Government: Managing the Process. Washington DC: Committee on the Institutional Means for Assessment of Risks to Public Health, Commission on Life Sciences. National Academy Press; 1983.

    Google Scholar 

  16. Iavicoli I, Leso V, Fontana L, et al. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory. J Occup Environ Med. 2013;55:430–45.

    PubMed  Google Scholar 

  17. Stefaniak AB, Hackley VA, Roebben G, Ehara K, Hankin S, Postek MT, Lynch I, Fu W-E, Linsinger TPJ, Thünemann A. Nanoscale reference materials for environmental, health, and safety measurements: needs, gaps, and opportunities. Nanotoxicology. 2013;7:1325–37.

    PubMed  Google Scholar 

  18. Asbach C, Alexander C, Clavaguera S, et al. Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Sci Total Environ. 2017;603-604:793–806.

    CAS  PubMed  Google Scholar 

  19. Romero-Franco M, Godwin HA, Bilal M, et al. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein J Nanotechnol. 2017;8:989–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shvedova AA, Kisin E, Murray AR, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 2008;295:L552–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hull M, Kennedy A, Detzel C, Vikesland P, Chappell M. Moving beyond mass: the unmet need to consider dose metrics in environmental nanotoxicology studies. Environ Sci Technol. 2012;46(20):10881–2.

    CAS  PubMed  Google Scholar 

  22. Groso A, Petri-Fink A, Rothen-Rutishauser B, et al. Engineered nanomaterials: toward effective safety management in research laboratories. J Nanobiotechnol. 2016;14:21.

    Google Scholar 

  23. Spinazzè A, Cattaneo A, Del Buono L, et al. Engineered nanomaterials: current status of occupational exposure assessment. Italy J Occup Environ Hyg. 2016;7:81–98.

    Google Scholar 

  24. Murashov VV, Engel S, Savolainen K, Fullam B, Lee M, Kearns P. Occupational safety and health in nanotechnology and organisation for economic co-operation and development. J Nanopart Res. 2009;11(7):1587–91. https://doi.org/10.1007/s11051-009-9637-7.

    Article  Google Scholar 

  25. Organization for Economic Co-operation and Development (OECD). Harmonized tiered approach to measure and assess the potential exposure to airborne emissions of engineered nano-objects and their agglomerates and aggregates at workplaces. Series on the Safety of Manufactured Nanomaterials, No. 55. ENV/JM/MONO(2015)19; 2015.

    Google Scholar 

  26. Paik SY, Zalk DM, Swuste P. Application of a pilot control banding tool for risk level assessment and control of nanoparticle exposures. Ann Occup Hyg. 2008;52:419–28.

    CAS  PubMed  Google Scholar 

  27. Zalk DM, Paik SY, Swuste P. Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res. 2009;11:1685.

    CAS  Google Scholar 

  28. NanoSafer. (2016) NanoSafer 1.1. http://nanosafer.org/. Accessed 2 Apr 2019.

  29. Van Duuren-Stuurman B, Vink SR, Verbist KJ, et al. Stoffenmanager Nano version 1.0: a web-based tool for risk prioritization of airborne manufactured nano objects. Ann Occup Hyg. 2012;56:525–41.

    PubMed  Google Scholar 

  30. Asbach C, Kuhlbusch TAJ, Kaminski H, et al (2012) Standard operation procedures for assessing exposure to nanomaterials, following a tiered approach. Nano GEM.

    Google Scholar 

  31. Methner M, Hodson L, Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—part A. J Occup Environ Hyg. 2010;7:127–32.

    CAS  PubMed  Google Scholar 

  32. Methner M, Hodson L, Dames A, et al. Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials—Part B: Results from 12 field studies. J Occup Environ Hyg. 2010;7:163–76.

    CAS  PubMed  Google Scholar 

  33. Methner M, Beaucham C, Crawford C, et al. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg. 2012;9:543–55.

    CAS  PubMed  Google Scholar 

  34. Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;77:117–25.

    CAS  PubMed  Google Scholar 

  35. Eastlake A, Hodson L, Geraci C, et al. A critical evaluation of material safety data sheets (MSDSs) for engineered nanomaterials. Chem Health Saf. 2012;19:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hodson L, Eastlake A, Herbers R. An evaluation of engineered nanomaterial safety data sheets for safety and health information post implementation of the revised hazard communication standard. J Chem Health Saf. 2019;26:12–8.

    Google Scholar 

  37. EN (2012) Workplace Exposure – Terminology, EN 1540:2012–03. Beuth Verlag Berlin.

    Google Scholar 

  38. NanoIndEx Project. Assessment of personal exposure to airborne nanomaterials – a guidance document; 2016. http://www.nanoindex.eu/wp-content/uploads/2016/06/Nano_Brosch%C3%BCre.pdf. Accessed 12 Apr 2019.

  39. Fierz M, Houle C, Steigmeier P, et al. Design, calibration, and field performance of a miniature diffusion size classifier. Aerosol Sci Technol. 2011;45:1–10.

    CAS  Google Scholar 

  40. Marra J, Voetz M, Kiesling H. Monitor for detecting and assessing exposure to airborne nanoparticles. J Nanopart Res. 2010;12:21–37.

    CAS  Google Scholar 

  41. Fierz M, Meier D, Steigmeier P, et al. Aerosol measurement by induced currents. Aerosol Sci Technol. 2014;48:350–7.

    CAS  Google Scholar 

  42. Ryan P, Son S, Wolfe C, et al. A field application of a personal sensor for ultrafine particle exposure in children. Sci Total Environ. 2015;508:366–73.

    CAS  PubMed  Google Scholar 

  43. Hansen A, Rosen H, Novakov T. The Aethalometer—an instrument for the real time measurement of optical absorption by aerosol particles. Sci Total Environ. 1984;36:191–6.

    CAS  Google Scholar 

  44. Asbach C, Neumann V, Monz C, et al. On the effect of wearing personal nanoparticle monitors on the comparability of personal exposure measurements. Environ Sci Nano. 2017;4:233–43.

    CAS  Google Scholar 

  45. Todea A, Beckmann S, Kaminski H, et al. Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations. J Aerosol Sci. 2015;89:96–109.

    CAS  Google Scholar 

  46. Todea AM, Beckmann S, Kaminski H, et al. Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Sci Total Environ. 2017;605-606:929–45.

    CAS  PubMed  Google Scholar 

  47. Viana M, Rivas I, Reche C, et al. Field comparison of portable and stationary instruments for outdoor urban air exposure assessments. Atmos Environ. 2015;123:220–8.

    CAS  Google Scholar 

  48. Bau S, Zimmermann B, Payet R, et al. A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15–400 nm range. Environ Sci: Processes Impacts. 2015;17:261–9.

    CAS  Google Scholar 

  49. Asbach C, Clavaguera S, Todea A. Measurement methods for nanoparticles in indoor and outdoor air. Indoor and outdoor nanoparticles—Determinants of release and exposure scenarios, vol. 48. Cham: Springer International Publishing; 2016. p. 19–49.

    Google Scholar 

  50. Cena L, Anthony T, Peters T. A personal nanoparticle respiratory deposition (NRD) sampler. Environ Sci Technol. 2011;45:6483–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miller A, Frey G, King G, et al. A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol. 2010;44:417–27.

    CAS  Google Scholar 

  52. Fierz M, Meier D, Steigmeier P, et al. Miniature nanoparticle sensors for exposure measurement and TEM sampling. J Phys Conf Ser. 2015;617:012034.

    Google Scholar 

  53. Bieri R, Cattaneo S. (2018) Device for measuring the exposure to small particles, in particular nano tubes. United States patent US20180073985A1.

    Google Scholar 

  54. Houseman A, Virji MA, A Bayesan approach for summarizing and modeling time-series exposure data with left censoring. Ann Work Expo Health. 2017;61(7):773–83

    Google Scholar 

  55. Entink RHK, Fransman W, Brouwer DH. How to statistically analyze nano exposure measurement results: using an ARIMA time series approach. J Nanopart Res. 2011;13:6991–7004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Iavicoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eastlake, A.C., Fontana, L., Iavicoli, I. (2020). Monitoring Nanomaterials in the Workplace. In: Otsuki, T., Di Gioacchino, M., Petrarca, C. (eds) Allergy and Immunotoxicology in Occupational Health - The Next Step. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4735-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4735-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4734-8

  • Online ISBN: 978-981-15-4735-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics