Skip to main content

Marine Bacteria—A Treasure House of Valuable Products and Functions

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Immense diversity of prokaryotes is reported for the oceans; however, we probably know only 0.01% of the microorganisms from marine ecosystems. Due to the burning need of new or novel therapeutic and environmental useful compounds, these less explored marine habitats have attracted various researchers since the last five decades. Nearly 16,000 natural products are discovered from marine organisms. Marine microbes are very diverse because they are exposed to wide variations in temperature, salinity, nutrition, and pressure at different levels. These extreme conditions are responsible for the presence of diverse photoautotrophs, chemolithotrophs, heterotrophs, nitrogen fixers, denitrifiers, luminescent as well as sulfur and iron oxidizers and reducing microorganisms. Various culture-dependent and -independent methods are used to explore the hidden microbial diversity and their potency. The chapter discusses about the production of various bioactive compounds, enzymes, neutraceuticals, exopolysaccharides, antibiotics, biosurfactants as well as the potential organisms useful in dye decolorization, microbial enhanced oil recovery, hydrocarbon degradation, and metal bioremediation. The chapter also deals with feature prospects in terms of valuable industrial and environmental significance of the bacterial community of oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo JP, Reyes F, Parra LP, Salazar O, Andrews B, Asenjo J (2008) Cloning of complete genes for novel hydrolytic enzymes from Antarctic Sea water bacteria by use of an improved genome walking technique. J Biotechnol 133:277–286

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo HWC, Andrade RFS, Montero-Rodriguez D, Rubio-Ribeaux D, Alves da Silva CA, Campos-Takaki GM (2019) Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb Cell Factories 18:2

    Article  Google Scholar 

  • Ashadevi NK, Rajendran R, Sundaram SK (2011) Isolation and characterization of bioactive compounds from marine bacteria. Indian J Nat Prod Resour 2:59–64

    Google Scholar 

  • Asker D, Ohta Y (1999) Production of canthaxanthin by extremely halophilic bacteria. J Biosci Bioeng 88:617–621

    Article  CAS  PubMed  Google Scholar 

  • Ayyam V, Palanivel S, Chandrakasan S (2019) Coastal Fauna and Human Perturbation. In: Coastal ecosystems of the tropics - adaptive management. Springer, Singapore, pp 91–106

    Chapter  Google Scholar 

  • Balabanova LA, Bakunina IY, Makarenkova ID, Zaporozhets TS, Basednova NN, Zvyagintseva TN et al (2010) Molecular characterization and therapeutic potential of a marine bacterium Pseudoalteromonas sp. KMM 701 α-galactosidase. Mar Biotechnol 12:111–120

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit N (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697

    Article  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2019) Micro-remediation of metals: a new frontier in bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Cham, Springer, pp 480–513

    Google Scholar 

  • Battersby NS (1988) Sulphate-reducing bacteria. Methods in Aquatic Bacteriology. John Wiley & Sons, In, pp 269–300

    Google Scholar 

  • Beleneva IA, Agarkova VV, Kukhlevskiy AD, Zviagintseva TN (2010) Distribution of the enzymes of carbohydrate metabolism among marine microorganisms in the sea of Japan and the south Chinese Sea. Microbiol 79:791–798

    Article  CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2005) Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci 88:45–53

    CAS  Google Scholar 

  • Bonnet R, Suau A, Dore J, Gibson GR, Collins MD (2002) Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int J Syst Evol Microbiol 52:757–763

    CAS  PubMed  Google Scholar 

  • Burgess JG (2012) New and emerging analytical techniques for marine biotechnology. Curr Opin Biotechnol 23:29–33

    Article  CAS  PubMed  Google Scholar 

  • Caccamo D, Cello F, Fani R, Gugliandolo C, Maugeri TL (1999) Polyphasic approach to the characterisation of marine luminous bacteria. Res Mcrobiol 150:221–230

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Khopade S, Kokare C, Mahadik K, Chopade B (2009) Isolation and characterization of novel α-amylase from marine Streptomyces sp. D1. J Mol Catal 58:17–23

    Article  CAS  Google Scholar 

  • Chi ZM, Ma C, Wang P, Li HF (2007) Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour Technol 98:534–538

    Article  CAS  PubMed  Google Scholar 

  • Conrad R, Schutz H (1988) Methods of studying methanogenic bacteria and methanogenic activities in aquatic environments. Methods in Aquatic Bacteriology. John Wiley & Sons, In, pp 301–346

    Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanography and Marine Biology - An Annual Review. Aberdeen University Press, In, pp 73–153

    Google Scholar 

  • Delbarre-Ladrat C, Sinquin C, Lobellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysachharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:1–15

    Article  CAS  Google Scholar 

  • Du J, Xiao K, Huang Y, Li H, Tan H, Cao L et al (2011) Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea. Antonie Leeuwenhoek 100:317–331

    Article  PubMed  Google Scholar 

  • Elango G, Govindasamy R (2018) Removal of colour from textile dyeing effluent using temple waste flowers as ecofriendly adsorbent. IOSR J Appl Chem 11:19–28

    CAS  Google Scholar 

  • Fadlalla MI, Senthil Kumar P, Selvam V, Ganesh Babu S. Recent Advances in Nanomaterials for Wastewater Treatment. In: Naushad M, Rajendran S, Gracia F, editors. Advanced Nanostructured Materials for Environmental Remediation. Environmental Chemistry for a Sustainable World. vol 25. Springer, Cham; 2019. p. 21–58

    Google Scholar 

  • Faegri A, Torsvik VL, Goksoyr J (1977) Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9:105–112

    Article  Google Scholar 

  • Feller G, Thiry M, Arpigny J, Mergeay M, Gerday C (1990) Lipases from psychrotrophic antarctic bacteria. FEMS Microbiol Lett 66:239–244

    Article  CAS  Google Scholar 

  • Georgiou G, Lin S, Sharma MM (1992) Surface active compounds from microorganisms. BioTechnol 10:60–65

    CAS  Google Scholar 

  • Gillan DC, Danis B, Pernet P, Joly G, Dubois P (2005) Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 71:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni SJ, Vergin KL (2012) Seasonality in ocean microbial communities. Science 335:671–676

    Article  CAS  PubMed  Google Scholar 

  • Gnanambal KME, Chellaram C, Patterson J (2005) Isolation of antagonistic marine bacteria from the surface of the gorgonian corals at Tuticorin, south east coast of India. Indian J Mar Sci 34:316–319

    Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25:1185–1194

    Article  CAS  PubMed  Google Scholar 

  • Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M (2009) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour Technol 100:3366–3373

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  • Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    Article  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Wang T, Long H, Zhu H (2006) Novel cold-adaptive Penicillium strain FS010 secreting Thermo-labile Xylanase isolated from Yellow Sea. Acta Biochim Biophys Sin 38:142–149

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Labes A, Wiese J (2011) Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol Adv 29:468–482

    Article  CAS  PubMed  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Characterization of an exopolysaccharide produced by a marine Enterobacter cloaceae. Indian J Exp Biol 43:467–471

    CAS  PubMed  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep sea hydrothermal vents. Science 229:717–725

    Article  CAS  PubMed  Google Scholar 

  • Jayanth K, Jeyasekaran G, Shakila RJ (2002) Isolation of marine bacteria, antagonistic to human pathogens. Indian J Mar Sci. 31:39–44

    CAS  Google Scholar 

  • Jernelov A (2010) The threats from oil spills: now, then, and in the future. Ambio 39:353–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Joint I, Muhling M, Querellou J (2010) Culturing marine bacteria-an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein S (2002) Isolating “uncultivable” microorganisms in a pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    Article  CAS  PubMed  Google Scholar 

  • Kennedy J, Burkhardt F, Stephen J, David L, John M, Fergal O, et al. Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs, 2010;8:608–628

    Google Scholar 

  • Khire JM, Khan MI (1994a) Microbially enhanced oil recovery (MEOR). Part 1. Importance and mechanism of MEOR. Enzym Microb Technol 16:170–172

    Article  CAS  Google Scholar 

  • Khire JM, Khan MI. Microbially enhanced oil recovery (MEOR). Part 2 . Microbes and the subsurface environment for MEOR. Enzym Microb Technol 1994b;16:258–259

    Google Scholar 

  • Kubicki S, Bollinger A, Katzke N, Jaeger K, Loeschcke A, Thies S (2019) Marine biosurfactants: biosynthesis, structural diversity and biotechnological applications. Mar Drugs 17:408

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysachharides-a perception. J Basic Microbiol 47:103–117

    Article  CAS  PubMed  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Kwon KK, Kang SG, Cha S, Kim S, Lee J (2010) Approaches for novel enzyme discovery from marine environments. Curr Opin Biotechnol 21:353–357

    Article  CAS  PubMed  Google Scholar 

  • Li HF, Chi ZM, Wang XH, Ma CL (2007) Amylase production by the marine yeast Aureobasidium pullulans N13d. J OCEAN U CHINA 6:61–66

    Google Scholar 

  • Liu J, Zhang Z, Liu Z, Zhu H, Dang H, Lu J et al (2011) Production of cold-adapted amylase by marine bacterium Wangia sp. C52: optimization, modeling, and partial characterization. Mar Biotechnol 13:837–844

    Article  CAS  Google Scholar 

  • Lum PT, Foo KY, Zakaria NA, Palaniandy P (2020) Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater Chem Phys 241:122405

    Article  CAS  Google Scholar 

  • Luna GM, Dell’Anno A, Pietrangeli B, Danovaro R (2012) A new molecular approach based on qPCR for the quantification of fecal bacteria in contaminated marine sediments. J Biotechnol 157:446–453

    Article  CAS  PubMed  Google Scholar 

  • MacGregor BJ (1999) Molecular approaches to the study of aquatic microbial communities. Curr Opin Biotechnol 10:220–224

    Article  CAS  PubMed  Google Scholar 

  • Majumdar I, D’Souza F, Bhosle NB (1999) Microbial exopolysaccharides: effect on corrosion and partial chemical characterization. J Indian I Sci 79:539–550

    CAS  Google Scholar 

  • Maneerat S (2005) Biosurfactants from marine microorganisms. Songklanakarin J Sci Technol 27:1263–1272

    Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Martin P, MacLeod RA (1984) Observations on the distinction between oligotrophic and eutrophic marine bacteria. Appl Environ Microbiol 47:1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunaga T, Shibazaki Y. Production of red pigment from microalgae. Patent no. JP6046868. 22 February 1994

    Google Scholar 

  • Matsunaga T, Sudo H, Takemasa H, Wachi Y (1996) Sulfated extracellular polysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica immobilized on light-diffusing optical fibers. Appl Microbiol Biotechnol 45:24–27

    Article  CAS  Google Scholar 

  • Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium-polluted seawater. J Biotechnol 70:33–38

    Article  CAS  PubMed  Google Scholar 

  • Mayer AMS, Rodriguez AD, Berlinck RGS, Fusetani N (2007) Marine pharmacology in 2007-8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mec. Comp Biochem Physiol C Toxicol Pharmacol 153:191–222

    Article  CAS  Google Scholar 

  • Maynard A, Butler NL, Ito T, da Silva AJ, Murai M, Chen T et al (2019) Antibiotic korormicin a kills bacteria by producing reactive oxygen species. J Bacteriol 201:e00718–e00718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo SJ, Kim JH, Cho KW (2009) Enzymatic properties of an extracellular phospholipase C purified from a marine Streptomycete. Biosci Biotechnol Biochem 73:2136–2137

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra BR, Banerjee UC, Bapuji M. Characterization of a fungal amylase from Mucor sp . associated with the marine sponge Spirastrella sp. J Biotechnol 1998;60:113–117

    Google Scholar 

  • Mordarska H, Mordarski M, Goodfellow M (1972) Chemotaxonomic characters and classification of some nocardioform bacteria. J Gen Microbiol 71:77–86

    Article  CAS  PubMed  Google Scholar 

  • Nawaz A, Ahmed N (2011) Isolation and characterization of indigenous luminescent marine bacteria from Karachi coast. Acad Res Int 1:74–83

    Google Scholar 

  • Nichols C, Garon S, Bowman J, Raguénès G, Guézennec J (2004) Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol 96:1057–1066

    Article  CAS  Google Scholar 

  • Nichols CM, Lardière S, Bowman J, Nichols PD, Gibson JAE, Guézennec J (2005) Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49:578–589

    Article  CAS  PubMed  Google Scholar 

  • Ogilvie LA, Grant A (2008) Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments. Mar Environ Res 65:187–198

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Hatada Y (2006) A novel enzyme, k-Carrageenase, isolated from a Deep-Sea bacterium. J Biochem 140:475–481

    Article  CAS  PubMed  Google Scholar 

  • Okutani K (1984) Antitumor and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull Japanese Soc Sci Fish 50:1035–1037

    Article  Google Scholar 

  • Osawa R, Koga T (1995) An investigation of aquatic bacteria capable of utilizing chitin as the sole source of nutrients. Lett App Microbiol 21:288–291

    Article  CAS  Google Scholar 

  • Ozdemir G, Pazarbasi B, Kocyigit A, Omeroglu E, Yasa I, Karaboz I (2008) Decolorization of acid black 210 by Vibrio harveyi TEMS1, a newly isolated bioluminescent bacterium from Izmir Bay. Turkey World J Microbiol Biotechnol 24:1375–1381

    Article  Google Scholar 

  • Pandey A. Pharmacological Potential of Marine Microbes. In: Arora D, Sharma C, Jaglan S, Lichtfouse E, editors. Pharmaceuticals from Microbes. Environmental Chemistry for a Sustainable World. Vol 28. Springer, Cham; 2019

    Google Scholar 

  • Piza FF, Prado PI, Manfio GP (2004) Investigation of bacterial diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity. Antonie Van Leeuwenhoek 86:317–328

    Article  CAS  PubMed  Google Scholar 

  • Polz MF, Cavanaugh C (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purohit MK, Singh SP (2009) Assessment of various methods for extraction of metagenomic DNA from saline habitats of coastal Gujarat (India) to explore molecular diversity. Lett Appl Microbiol 49:338–344

    Article  CAS  PubMed  Google Scholar 

  • Ram H, Sahu A, Said MS, Banpurkar AG, Gajbhiye JM, Dastager SG (2019) A novel fatty alkene from marine bacteria: a thermo stable biosurfactant and its applications. J Hazard Mater 380:1–9

    Google Scholar 

  • Ravenschlag K, Sahm K, Knoblauch C, Jørgensen B, Amann R, Ravenschlag K et al (2000) Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl Environ Microbiol 66:3592–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano G, Costantini M, Sansone C, Lauritano C, Ruocco N, Ianora A (2017) Marine microorganisms as a promising and sustainable source of bioactive molecules. Mar Environ Res 128:58–69

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria-a dogma rewritten. Microbiology 145:767–779

    Article  CAS  PubMed  Google Scholar 

  • Sarwar G, Matoyoshi S, Oda H (1987) Purification of a α-carrageenan from marine Cytophaga species. Microbiol Immunol 31:869–877

    Article  CAS  PubMed  Google Scholar 

  • Satpute SK, Bhawsar B, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci. 37:243–250

    CAS  Google Scholar 

  • Schneider J, Rheinheimer G (1988) Isolation methods. Methods in Aquatic Bacteriology. John Wiley & Sons, In, pp 73–94

    Google Scholar 

  • Schut F, Vries EJ, Gottschal J, Robertson B, Harder W, Prins R et al (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schut F, Prins R, Gottschal J (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202

    Article  Google Scholar 

  • Sen Gupta G, Yadav G, Tiwari S (2019) Bioremediation of heavy metals: a new approach to sustainable agriculture. In: Upadhyay A, Singh R, Singh D (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Singapore, Springer, pp 195–226

    Google Scholar 

  • Shao Y, Mu G, Song L, Yan S, Tan L (2019) Enhanced biodecolorization performance of azo dyes under high-salt conditions by a marine microbial community exposed to moderate-intensity static magnetic field. Environ Eng Sci 36:186–196

    Google Scholar 

  • Shigenaka G. Twenty-five years after the Exxon Valdez oil spill: NOAA's scientific support, monitoring and research. Seattle: NOAA Office of Response and Restoration. 2014. p. 78

    Google Scholar 

  • Siddhapura PK, Vaparia S, Purohit MK, Singh SP (2010) Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. Int J Biol Macromol 47:375–379

    Article  CAS  PubMed  Google Scholar 

  • Srinivas TNR, Nupur, Anil Kumar P (2012) Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater. Antonie van Leeuwenhoek 101:761–768

    Google Scholar 

  • Stafsnes MH, Josefsen KD, Kildahl-Andersen G, Valla S, Ellingsen TE, Bruheim P (2010) Isolation and characterization of marine pigmented bacteria from Norwegian coastal waters and screening for carotenoids with UVA-blue light absorbing properties. J Microbiol 48:16–23

    Article  CAS  PubMed  Google Scholar 

  • Strom SL. Microbial ecology of ocean biogeochemistry: a community perspective. Science. 2008;320:1043–1045

    Google Scholar 

  • Sun W, Dai S, Jiang S, Wang G, Liu G, Wu H et al (2010) Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie Van Leeuwenhoek 98:65–75

    Article  CAS  PubMed  Google Scholar 

  • Susgano Y, Terada I, Arita M, Noma M (1993) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl Environ Microbiol 59:1549–1554

    Article  Google Scholar 

  • Suvorov M, Kumar R, Zhang H, Hutcheson S (2011) Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production. Biofuels 2:1–12

    Article  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Sawai Y, Suzuki T, Kawai K (2003) Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J Biosci Bioeng 95:328–334

    Article  CAS  PubMed  Google Scholar 

  • Taylor LE, Henrissat B, Coutinho P, Ekborg N, Hutcheson S, Weiner R (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40T. J Bacteriol 188:3849–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Daae F, Sandaa R, Ovreås L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  PubMed  Google Scholar 

  • Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turkiewicz M, Gromek E, Kalinowska H, Zielinska M (1999) Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingomonas paucimobilis. J Biotechnol 70:53–60

    Article  CAS  Google Scholar 

  • Upadhyay KH, Vaishnav AM, Tipre DR, Dave SR (2016) Diversity assessment and EPS production potential of cultivable bacteria from the samples of coastal site of Alang. J Microbiol Biotechnol Food Sci 6:661–666

    CAS  Google Scholar 

  • Wagner A, Blackstone N, Cartwright P, Dick M, Snow P, Wagner GP et al (1994) Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol 43:250–261

    Article  Google Scholar 

  • Wang L, Chi ZM, Wang XH, Liu ZQ, Li J (2007) Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann Microbiol 57:495–501

    Article  CAS  Google Scholar 

  • Wardell JN (1988) Methods for the study of bacterial attachment. Methods in Aquatic Bacteriology. John Wiley & Sons, In, pp 389–416

    Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Wolfe D, Michel J, Hameedi MJ, Payne JR, Galt JA, Watabayashi G et al (1994) The fate of the oil spilled from the Exxon Valdez. Environ Sci Technol 28:560A–568A

    Article  CAS  PubMed  Google Scholar 

  • Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I et al (2008) Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar Biotechnol 10:128–132

    Article  CAS  Google Scholar 

  • Yallop ML, Paterson DM, Wellsbury P (2000) Interrelationships between rates of microbial production, exopolymer production, microbial biomass, and sediment stability in biofilms of intertidal sediments. Microb Ecol 39:116–127

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Lin H, Chiang Y, Jiang S (2010) Bioproperties and purification of xylanase from Bacillus sp. YJ6. J Agr Food Chem 58:557–562

    Article  CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Zhou W, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett 107:157–162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tipre, D.R., Purohit, M.S., Dave, S.R. (2020). Marine Bacteria—A Treasure House of Valuable Products and Functions. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_23

Download citation

Publish with us

Policies and ethics