Skip to main content

Global Seismicity of the Solid Earth

  • Chapter
  • First Online:
Global Seismicity Dynamics and Data-Driven Science

Part of the book series: Advances in Geological Science ((AGS))

  • 353 Accesses

Abstract

Global seismicity of the earth is controlled by plate tectonics framework and then it is a key for clarifying the structure and dynamics of the earth interior. Especially, huge amounts of global seismic data are now accumulating and monitoring to be open in the scientific use involving the global mechanics of the short-term plate tectonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki K (1979) Characterization of barriers on an earthquake fault. J Geophys Res 84:6140–6148

    Article  Google Scholar 

  • Aki K (1984) Asperities, barriers, characteristic earthquakes and strong motion prediction. J Geophys Res 89:5867–5872

    Article  Google Scholar 

  • Avrami M (1941) Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys 9(2):177–184

    Article  Google Scholar 

  • Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2853

    Article  Google Scholar 

  • Ekstrom G (2007) Global seismicity: results from systematic waveform analyses, 1976–2005. In: Kanamori H (ed) Treatise on geophysics. Elsevier, pp 473–481

    Google Scholar 

  • Friedlander SK (1977) Smoke, dust, and haze: fundamentals of aerosol behavior. Wiley, New York, p 400

    Google Scholar 

  • Fujie G, Kodaira S, Sato T, Takahashi T (2016) Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan trench. Geophy Res Lett 2016(43):666–673

    Article  Google Scholar 

  • Green II HW, Burnley PC (1989) A new self-organizing mechanism for deep-focus earthquakes. Nature 341(6244):733–737

    Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Ide S, Shelly DR (2007) A scaling law for slow earthquakes. Nature 447:76079. https://doi.org/10.1038/nature05780

    Article  Google Scholar 

  • Igarashi T, Matsuzawa T, Hasegawa A (2003) Repeating earthquakes and interplate aseismic slip in the northeastern Japan subduction zone. J Geophys Res 108(B5):2249. https://doi.org/10.1029/2002JB001920

    Article  Google Scholar 

  • Ito E, Sato H (1992) Effect of phase transformations on the dynamics of descending slab, In: Syono Y, Manghnani MH (eds) High pressure research: application to earth and planetary sciences, pp 257–262

    Google Scholar 

  • Ito Y, Obara K, Shiomi K, Sekine S, Hirose H (2007) Slow earthquakes coincident with episodic tremors and slow slip events. Science 315:503. https://doi.org/10.1126/scienc.1134454

  • Kanamori H (1986) Rupture process of subduction zone earthquakes. Ann Rev Earth Planet Sci 14293–14322

    Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095

    Google Scholar 

  • Kanamori H, Stewart GS (1978) Seismological aspects of the Guatemala earthquake of February 4. J Geophys Res 83:3427–3434

    Article  Google Scholar 

  • Karato S (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, p 463

    Google Scholar 

  • Kato A, Obara K, Igarashi T, Tsuruoka H, Nakagawa S, Hirata N (2012) Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335:705–708. https://doi.org/10.1126/science.1215141

    Article  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27

    Article  Google Scholar 

  • Ohnaka M (2000) A physical scaling relation between the size of an earthquake and its nucleation zone size. Pure Appl Geophys 157:2259–2282

    Article  Google Scholar 

  • Ohnaka M, Matsu’ura M (2002) The physics of earthquake generation. Univ. Tokyo. Press, p 378. in Japanese

    Google Scholar 

  • Oliver J, Isacks B (1967) Deep earthquake zones, anomalous structures in the upper mantle, and the lithosphere. J Geophys Res 72:4259

    Article  Google Scholar 

  • Omori S, Kamiya S, Maruyama S, Zhao D (2002) Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bull Earthq Res Ints Univ Tokyo 76:455–478

    Google Scholar 

  • Ringwood AE (1975) Composition and structure of the earth’s mantle. McGraw-Hill

    Google Scholar 

  • Schwartz S, Rokosky JM (2006) Slow slip events and seismic tremor at circum-Pacific subduction zones. Rev Geophys 45:RG3004. https://doi.org/10.1029/2006rg000208

  • Toriumi M (1986) Mechanical segregation of garnet in synmetamorphic flow of pelitic schists. J Petrol 27:1395–1408

    Article  Google Scholar 

  • Toriumi M (2008) A viewpoint of nonlinear dynamics to earthquakes. Kagaku (Science in Japan) 78(11):1233–1237 (in Japanese)

    Google Scholar 

  • Utsu T (1961) A statistical study on the occurrence of aftershocks. Geophys Mag 30:521–605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Toriumi .

3.1 Electronic Supplementary Material

Below is the link to the Electronic Supplementary Material.

Supplementary material 1 (XLSX 15 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toriumi, M. (2021). Global Seismicity of the Solid Earth. In: Global Seismicity Dynamics and Data-Driven Science. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-15-5109-3_3

Download citation

Publish with us

Policies and ethics