Skip to main content

Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology

  • Chapter
  • First Online:
Nanotechnology in Regenerative Medicine and Drug Delivery Therapy

Abstract

Although cancer immunotherapy has made great progress in treating a variety of malignances, its clinical efficacy is often dampened by tumor heterogeneity, tumor microenvironment, and immune cell dysfunction. An effective antitumor immune response involves a series of immunological events called the “cancer-immunity cycle,” which provides the rationale for designing new therapeutic approaches. Nanotechnology demonstrates great potentials of immunomodulation, offering new opportunities to accelerate the development of next generation of cancer immunotherapy. We herein review current applications of nanotechnology, which effectively boost anticancer immune responses through targeting each step of the cancer-immunity cycle, thereby enhancing the potency and minimizing the toxicity of cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.S. Chen, I. Mellman, Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1), 1–10 (2013)

    PubMed  Google Scholar 

  2. R. Anderson, B.L. Rapoport, Immune dysregulation in cancer patients undergoing immune checkpoint inhibitor treatment and potential predictive strategies for future clinical practice. Front. Oncol. 8, 80 (2018)

    PubMed  PubMed Central  Google Scholar 

  3. L.H. Butterfield, Cancer vaccines. BMJ 350, h988 (2015)

    PubMed  PubMed Central  Google Scholar 

  4. E.N. Baruch et al., Adoptive T cell therapy: an overview of obstacles and opportunities. Cancer 123(S11), 2154–2162 (2017)

    PubMed  Google Scholar 

  5. B. Ye et al., Engineering chimeric antigen receptor-T cells for cancer treatment. Mol. Cancer 17(1), 32–47 (2018)

    PubMed  PubMed Central  Google Scholar 

  6. G. Marelli et al., Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Front. Immunol. 9, 866 (2018)

    PubMed  PubMed Central  Google Scholar 

  7. E. Hong, M.A. Dobrovolskaia, Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Adv. Drug Deliv. Rev. 141, 3–22 (2018)

    PubMed  Google Scholar 

  8. D.M. Smith, J.K. Simon, J.R. Baker Jr., Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13(8), 592–605 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. T. Iwama et al., Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice. Biochem. Biophys. Res. Commun. 469(1), 138–143 (2016)

    CAS  PubMed  Google Scholar 

  10. N. Miura et al., Modifying antigen-encapsulating liposomes with KALA facilitates MHC class I antigen presentation and enhances anti-tumor effects. Mol. Ther. 25(4), 1003–1013 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. L.M. Kranz et al., Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607), 396–401 (2016)

    PubMed  Google Scholar 

  12. M.A. Oberli et al., Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17(3), 1326–1335 (2017)

    CAS  PubMed  Google Scholar 

  13. A. Garu et al., Genetic immunization with in vivo dendritic cell-targeting liposomal DNA vaccine carrier induces long-lasting antitumor immune response. Mol. Ther. 24(2), 385–397 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. C. Lai et al., The enhanced antitumor-specific immune response with mannose- and CpG-ODN-coated liposomes delivering TRP2 peptide. Theranostics 8(6), 1723–1739 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Lu et al., Breast cancer chemo-immunotherapy through liposomal delivery of an immunogenic cell death stimulus plus interference in the IDO-1 pathway. ACS Nano 12(11), 11041–11061 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. J. Gao et al., Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. Int. J. Nanomedicine 12, 1251–1264 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Mizrahy et al., Advanced strategies in immune modulation of cancer using lipid-based nanoparticles. Front. Immunol. 8, 69 (2017)

    PubMed  PubMed Central  Google Scholar 

  18. E.M. Varypataki et al., Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: a comparative study of cationic liposomes and PLGA nanoparticles. J. Control. Release 226, 98–106 (2016)

    CAS  PubMed  Google Scholar 

  19. Q. Liu et al., pH-responsive poly(D,L-lactic-co-glycolic acid) nanoparticles with rapid antigen release behavior promote immune response. ACS Nano 9(5), 4925–4938 (2015)

    CAS  PubMed  Google Scholar 

  20. G.N. Shi et al., Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 113, 191–202 (2017)

    CAS  PubMed  Google Scholar 

  21. F. Jadidi-Niaragh et al., CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J. Control. Release 246, 46–59 (2017)

    CAS  PubMed  Google Scholar 

  22. L.J. Cruz et al., Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J. Control. Release 192, 209–218 (2014)

    CAS  PubMed  Google Scholar 

  23. J. Conniot et al., Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front. Chem. 2, 105 (2014)

    PubMed  PubMed Central  Google Scholar 

  24. E.C. Carroll et al., The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity 44(3), 597–608 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. F. Fontana et al., Delivery of therapeutics with nanoparticles: what’s new in cancer immunotherapy? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(1) (2017)

    Google Scholar 

  26. H. Li et al., Rational design of polymeric hybrid micelles to overcome lymphatic and intracellular delivery barriers in cancer immunotherapy. Theranostics 7(18), 4383–4398 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Li et al., Synthetic polymeric mixed micelles targeting lymph nodes trigger enhanced cellular and humoral immune responses. ACS Appl. Mater. Interfaces 10(3), 2874–2889 (2018)

    CAS  PubMed  Google Scholar 

  28. S. Kudo, Y. Nagasaki, A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(l-arginine)-based nanoparticles. J. Control. Release 217, 256–262 (2015)

    CAS  PubMed  Google Scholar 

  29. Y. Lu et al., Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol. Ther. 24(2), 364–374 (2016)

    CAS  PubMed  Google Scholar 

  30. L. Liu et al., ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy. Biomacromolecules 19(6), 2146–2155 (2018)

    CAS  PubMed  Google Scholar 

  31. L. Liu et al., Integrated nanovaccine with microRNA-148a inhibition reprograms tumor-associated dendritic cells by modulating miR-148a/DNMT1/SOCS1 axis. J. Immunol. 197(4), 1231–1241 (2016)

    CAS  PubMed  Google Scholar 

  32. Z. Luo et al., Cationic polypeptide micelle-based antigen delivery system: a simple and robust adjuvant to improve vaccine efficacy. J. Control. Release 170(2), 259–267 (2013)

    CAS  PubMed  Google Scholar 

  33. Z. Luo et al., Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 38, 50–60 (2015)

    CAS  PubMed  Google Scholar 

  34. K. Miki et al., Combination therapy with dendritic cell vaccine and IL-2 encapsulating polymeric micelles enhances intra-tumoral accumulation of antigen-specific CTLs. Int. Immunopharmacol. 23(2), 499–504 (2014)

    CAS  PubMed  Google Scholar 

  35. S.M. Garg et al., Self-associating poly(ethylene oxide)-block-poly(alpha-carboxyl-epsilon-caprolactone) drug conjugates for the delivery of STAT3 inhibitor JSI-124: potential application in cancer immunotherapy. Mol. Pharm. 14(8), 2570–2584 (2017)

    CAS  PubMed  Google Scholar 

  36. B. Yang et al., DNA vaccine for cancer immunotherapy. Hum. Vaccin. Immunother. 10(11), 3153–3164 (2014)

    PubMed  Google Scholar 

  37. P. Daftarian et al., Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 71(24), 7452–7462 (2011)

    CAS  PubMed  Google Scholar 

  38. A.R. Yoon et al., Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J. Control. Release 231, 2–16 (2016)

    CAS  PubMed  Google Scholar 

  39. A.E. Czapar et al., Slow-release formulation of cowpea mosaic virus for in situ vaccine delivery to treat ovarian cancer. Adv. Sci. (Weinh) 5(5), 1700991–1700998 (2018)

    Google Scholar 

  40. J. Xu et al., Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials 207, 1–9 (2019)

    CAS  PubMed  Google Scholar 

  41. P. Niederhafner et al., Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J. Pept. Sci. 14(5), 556–587 (2008)

    CAS  PubMed  Google Scholar 

  42. W.M. Hussein et al., Multiantigenic peptide-polymer conjugates as therapeutic vaccines against cervical cancer. Bioorg. Med. Chem. 24(18), 4372–4380 (2016)

    CAS  PubMed  Google Scholar 

  43. Y.H. Roh et al., Multivalent DNA-based vectors for DNA vaccine delivery. Methods Mol. Biol. 1143, 159–179 (2014)

    CAS  PubMed  Google Scholar 

  44. H. Yang, Targeted nanosystems: advances in targeted dendrimers for cancer therapy. Nanomedicine 12(2), 309–316 (2016)

    CAS  PubMed  Google Scholar 

  45. I. Corraliza-Gorjon et al., New strategies using antibody combinations to increase cancer treatment effectiveness. Front. Immunol. 8, 1804 (2017)

    PubMed  PubMed Central  Google Scholar 

  46. N. Miyamoto et al., Adjuvant activity enhanced by cross-linked CpG-oligonucleotides in beta-Glucan nanogel and its antitumor effect. Bioconjug. Chem. 28(2), 565–573 (2017)

    CAS  PubMed  Google Scholar 

  47. A. Purwada et al., Self-assembly protein nanogels for safer cancer immunotherapy. Adv. Healthc. Mater. 5(12), 1413–1419 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. P. Li et al., Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J. Control. Release 168(3), 271–279 (2013)

    CAS  PubMed  Google Scholar 

  49. C. Wang et al., Self-adjuvanted nanovaccine for cancer immunotherapy: role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 79, 88–100 (2016)

    CAS  PubMed  Google Scholar 

  50. T. Shimizu et al., Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun. 367(2), 330–335 (2008)

    CAS  PubMed  Google Scholar 

  51. D. Muraoka et al., Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano 8(9), 9209–9218 (2014)

    CAS  PubMed  Google Scholar 

  52. S.Z. Khaled et al., One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA. Biomaterials 87, 57–68 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Y. Tahara, K. Akiyoshi, Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv. Drug Deliv. Rev. 95, 65–76 (2015)

    CAS  PubMed  Google Scholar 

  54. S. Tan et al., Combinational delivery of lipid-enveloped polymeric nanoparticles carrying different peptides for anti-tumor immunotherapy. Nanomedicine (Lond.) 9(5), 635–647 (2014)

    CAS  Google Scholar 

  55. F. Rose et al., Engineering of a novel adjuvant based on lipid-polymer hybrid nanoparticles: a quality-by-design approach. J. Control. Release 210, 48–57 (2015)

    CAS  PubMed  Google Scholar 

  56. Q. Liu et al., Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano 12(2), 1250–1261 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. K. Thanki et al., Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: a quality by design-based approach. Eur. J. Pharm. Biopharm. 120, 22–33 (2017)

    CAS  PubMed  Google Scholar 

  58. L. Miao et al., Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano 11(9), 8690–8706 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. J.P.M. Almeida et al., In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small 11(12), 1453–1459 (2015)

    CAS  PubMed  Google Scholar 

  60. J. Conde et al., Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv. Funct. Mater. 25(27), 4183–4194 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. J.P. Almeida, E.R. Figueroa, R.A. Drezek, Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10(3), 503–514 (2014)

    CAS  PubMed  Google Scholar 

  62. S. Fogli et al., Inorganic nanoparticles as potential regulators of immune response in dendritic cells. Nanomedicine (Lond.) 12(14), 1647–1660 (2017)

    CAS  Google Scholar 

  63. X. Wang et al., Comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy. Adv. Healthc. Mater. 5(10), 1169–1176 (2016)

    CAS  PubMed  Google Scholar 

  64. J. Kim et al., Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33(1), 64–72 (2015)

    CAS  PubMed  Google Scholar 

  65. M. Kong et al., Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics 7(13), 3276–3292 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. X. Zhuang et al., Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J. Control. Release 228, 26–37 (2016)

    CAS  PubMed  Google Scholar 

  67. X. Xia et al., Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep. 11(6), 957–966 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. X. Wang et al., Stimulation of in vivo antitumor immunity with hollow mesoporous silica nanospheres. Angew. Chem. Int. Ed. Engl. 55(5), 1899–1903 (2016)

    CAS  PubMed  Google Scholar 

  69. J. Meng et al., Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4(9), 1364–1370 (2008)

    CAS  PubMed  Google Scholar 

  70. J. Meng et al., Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 21(14), 145104–145112 (2010)

    PubMed  Google Scholar 

  71. M. Yang et al., Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics 2(3), 258–270 (2012)

    PubMed  PubMed Central  Google Scholar 

  72. C. Wang et al., Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 26(48), 8154–8162 (2014)

    CAS  PubMed  Google Scholar 

  73. C.H. Villa et al., Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5(7), 5300–5311 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Y. Zhang et al., One-shot immunomodulatory nanodiamond agents for cancer immunotherapy. Adv. Mater. 28(14), 2699–2708 (2016)

    CAS  PubMed  Google Scholar 

  75. Y. Tao et al., Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials 35(37), 9963–9971 (2014)

    CAS  PubMed  Google Scholar 

  76. W. Song, S.N. Musetti, L. Huang, Nanomaterials for cancer immunotherapy. Biomaterials 148, 16–30 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. H.A. Hassan et al., Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 104, 310–322 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. S.P. Mukherjee et al., Macrophage sensing of single-walled carbon nanotubes via toll-like receptors. Sci. Rep. 8(1), 1115–1132 (2018)

    PubMed  PubMed Central  Google Scholar 

  79. A.B. Satterlee, L. Huang, Current and future theranostic applications of the lipid-calcium-phosphate nanoparticle platform. Theranostics 6(7), 918–929 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. M. Huo et al., Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J. Control. Release 245, 81–94 (2017)

    CAS  PubMed  Google Scholar 

  81. L. Liu et al., Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 26(1), 45–55 (2018)

    CAS  PubMed  Google Scholar 

  82. Q. Liu et al., BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol. Immunother. 67(2), 299–310 (2018)

    CAS  PubMed  Google Scholar 

  83. T.J. Goodwin, L. Huang, Investigation of phosphorylated adjuvants co-encapsulated with a model cancer peptide antigen for the treatment of colorectal cancer and liver metastasis. Vaccine 35(19), 2550–2557 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. B.R. Olden et al., Cell-templated silica microparticles with supported lipid bilayers as artificial antigen-presenting cells for T cell activation. Adv. Healthc. Mater. 8(2), e1801188 (2019)

    PubMed  Google Scholar 

  85. A.S. Cheung et al., Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36(2), 160–169 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. R.M. Clauson et al., Size-controlled iron oxide nanoplatforms with lipidoid-stabilized shells for efficient magnetic resonance imaging-trackable lymph node targeting and high-capacity biomolecule display. ACS Appl. Mater. Interfaces 10(24), 20281–20295 (2018)

    CAS  PubMed  Google Scholar 

  87. F. Duan et al., A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy. Biomaterials 122, 23–33 (2017)

    CAS  PubMed  Google Scholar 

  88. X. Zhong et al., An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J. Control. Release 300, 81–92 (2019)

    CAS  PubMed  Google Scholar 

  89. P. Zhang et al., Polyelectrolyte multilayers assembled entirely from immune signals on gold nanoparticle templates promote antigen-specific T cell response. ACS Nano 9(6), 6465–6477 (2015)

    CAS  PubMed  Google Scholar 

  90. A. Jurj et al., The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther. 11, 2871–2890 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. W. Li et al., Tailoring porous silicon for biomedical applications: from drug delivery to cancer immunotherapy. Adv. Mater. (2018)

    Google Scholar 

  92. S.T. Haque, E.H. Chowdhury, Recent progress in delivery of therapeutic and imaging agents utilizing organic-inorganic hybrid nanoparticles. Curr. Drug Deliv. 15(4), 485–496 (2018)

    CAS  PubMed  Google Scholar 

  93. Y. Liu, Y. Zhao, X. Chen, Bioengineering of metal-organic frameworks for nanomedicine. Theranostics 9(11), 3122–3133 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. B.R. Lee et al., Engineered human ferritin nanoparticles for direct delivery of tumor antigens to lymph node and cancer immunotherapy. Sci. Rep. 6, 35182 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. N.M. Molino et al., Display of DNA on nanoparticles for targeting antigen presenting cells. ACS Biomater Sci. Eng. 3(4), 496–501 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  96. N.M. Molino et al., Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation. ACS Nano 7(11), 9743–9752 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  97. B. Choi et al., Effective delivery of antigen-Encapsulin nanoparticle fusions to dendritic cells leads to antigen-specific cytotoxic T cell activation and tumor rejection. ACS Nano 10(8), 7339–7350 (2016)

    CAS  PubMed  Google Scholar 

  98. N.M. Molino, S.W. Wang, Caged protein nanoparticles for drug delivery. Curr. Opin. Biotechnol. 28, 75–82 (2014)

    CAS  PubMed  Google Scholar 

  99. C.M. Hu et al., Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8(12), 933–938 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Y. Guo et al., Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 9(7), 6918–6933 (2015)

    CAS  PubMed  Google Scholar 

  101. C. Wang et al., In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1(0011), 1–10 (2017)

    Google Scholar 

  102. A.V. Kroll et al., Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv. Mater. 29(47), 1703969–1703977 (2017)

    Google Scholar 

  103. R. Yang et al., Cancer cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12(6), 5121–5129 (2018)

    CAS  PubMed  Google Scholar 

  104. A. Pitchaimani, T.D.T. Nguyen, S. Aryal, Natural killer cell membrane infused biomimetic liposomes for targeted tumor therapy. Biomaterials 160, 124–137 (2018)

    CAS  PubMed  Google Scholar 

  105. G. Deng et al., Cell-membrane immunotherapy based on natural killer cell membrane coated nanoparticles for the effective inhibition of primary and Abscopal tumor growth. ACS Nano 12(12), 12096–12108 (2018)

    CAS  PubMed  Google Scholar 

  106. Y. Han et al., T cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. (Weinh) 6(15), 1900251 (2019)

    Google Scholar 

  107. L.J. Ochyl et al., PEGylated tumor cell membrane vesicles as a new vaccine platform for cancer immunotherapy. Biomaterials 182, 157–166 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. L. Wayteck et al., Hitchhiking nanoparticles: reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials 77, 243–254 (2016)

    CAS  PubMed  Google Scholar 

  109. R.A. Burga et al., Conjugating Prussian blue nanoparticles onto antigen-specific T cells as a combined nanoimmunotherapy. Nanomedicine (Lond.) 11(14), 1759–1767 (2016)

    CAS  Google Scholar 

  110. R.B. Jones et al., Antigen recognition-triggered drug delivery mediated by nanocapsule-functionalized cytotoxic T-cells. Biomaterials 117, 44–53 (2017)

    CAS  PubMed  Google Scholar 

  111. L. Tang et al., Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36(8), 707–716 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  112. F. Xia et al., Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials 170, 1–11 (2018)

    CAS  PubMed  Google Scholar 

  113. Q. Hu et al., Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. Nano Lett. 15(4), 2732–2739 (2015)

    CAS  PubMed  Google Scholar 

  114. X. Duan, C. Chan, W. Lin, Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. Engl. 58(3), 670–680 (2019)

    CAS  PubMed  Google Scholar 

  115. B. Montico et al., Immunogenic apoptosis as a novel tool for anticancer vaccine development. Int. J. Mol. Sci. 19(2), 594 (2018)

    PubMed Central  Google Scholar 

  116. I. Adkins et al., Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Onco. Targets. Ther. 3(12), e968434 (2014)

    Google Scholar 

  117. M. Olivo et al., Targeted therapy of cancer using photodynamic therapy in combination with multi-faceted anti-tumor modalities. Pharmaceuticals (Basel) 3(5), 1507–1529 (2010)

    Google Scholar 

  118. G. Lan et al., Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 140(17), 5670–5673 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  119. G. Yang et al., Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett. 18(4), 2475–2484 (2018)

    CAS  PubMed  Google Scholar 

  120. D.S. Pellosi, P. De Jesus, A.C. Tedesco, Spotlight on the delivery of photosensitizers: different approaches for photodynamic-based therapies. Expert Opin. Drug Deliv. 14(12), 1395–1406 (2017)

    CAS  PubMed  Google Scholar 

  121. W.R. Chen et al., Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 115(1), 25–30 (1997)

    CAS  PubMed  Google Scholar 

  122. H.T. Nguyen et al., Activation of inflammasomes by tumor cell death mediated by gold nanoshells. Biomaterials 33(7), 2197–2205 (2012)

    CAS  PubMed  Google Scholar 

  123. W. Yang et al., Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 10(11), 10245–10257 (2016)

    CAS  PubMed  Google Scholar 

  124. E.E. Sweeney, J. Cano-Mejia, R. Fernandes, Photothermal therapy generates a thermal window of immunogenic cell death in neuroblastoma. Small, 1800678–1800686 (2018)

    Google Scholar 

  125. Q. Han et al., CpG loaded MoS2 nanosheets as multifunctional agents for photothermal enhanced cancer immunotherapy. Nanoscale 9(18), 5927–5934 (2017)

    CAS  PubMed  Google Scholar 

  126. J. Wu, D.J. Waxman, Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett. 419, 210–221 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  127. L. Zitvogel et al., Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8(1), 59–73 (2008)

    CAS  PubMed  Google Scholar 

  128. E.M. Mastria et al., Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity. J. Control. Release 269, 364–373 (2018)

    CAS  PubMed  Google Scholar 

  129. D.W. Zheng et al., Highly integrated nano-platform for breaking the barrier between chemotherapy and immunotherapy. Nano Lett. 16(7), 4341–4347 (2016)

    CAS  PubMed  Google Scholar 

  130. E.B. Golden, L. Apetoh, Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. 25(1), 11–17 (2015)

    PubMed  Google Scholar 

  131. Q. Chen et al., Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy. Adv. Mater. 31(10), 1802228–1802239 (2019)

    Google Scholar 

  132. K. Lu et al., Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2(8), 600–610 (2018)

    CAS  PubMed  Google Scholar 

  133. J. Hong, C. Yun, Overcoming the limitations of locally administered oncolytic virotherapy. BMC. Biomed. Eng. 1, 1–11 (2019)

    Google Scholar 

  134. I.R. Khalil et al., Poly-gamma-glutamic acid (gamma-PGA)-based encapsulation of adenovirus to evade neutralizing antibodies. Molecules 23(10), 2565 (2018)

    PubMed Central  Google Scholar 

  135. G.K. Grunwald et al., Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J. Nucl. Med. 54(8), 1450–1457 (2013)

    PubMed  Google Scholar 

  136. J.W. Choi et al., Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials 65, 163–174 (2015)

    CAS  PubMed  Google Scholar 

  137. S. Mo et al., Increasing the density of nanomedicines improves their ultrasound-mediated delivery to tumours. J. Control. Release 210, 10–18 (2015)

    CAS  PubMed  Google Scholar 

  138. Z. Zhang et al., Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14), 3666–3678 (2011)

    CAS  PubMed  Google Scholar 

  139. Y. Horiuchi et al., Targeting cryptic epitope with modified antigen coupled to the surface of liposomes induces strong antitumor CD8 T-cell immune responses in vivo. Oncol. Rep. 34(6), 2827–2836 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  140. G. Alipour Talesh et al., Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol. Lett. 176, 57–64 (2016)

    CAS  PubMed  Google Scholar 

  141. J. Xie et al., Encapsulation of hydrophilic and hydrophobic peptides into hollow mesoporous silica nanoparticles for enhancement of antitumor immune response. Small 13(40), 1701741–1701758 (2017)

    Google Scholar 

  142. M.A. McNamara, S.K. Nair, E.K. Holl, RNA-based vaccines in cancer immunotherapy. J. Immunol. Res. 2015, 794528–794537 (2015)

    PubMed  PubMed Central  Google Scholar 

  143. L.A. Avila et al., Gene delivery and immunomodulatory effects of plasmid DNA associated with branched amphiphilic peptide capsules. J. Control. Release 241, 15–24 (2016)

    CAS  PubMed  Google Scholar 

  144. K. Sehgal, K.M. Dhodapkar, M.V. Dhodapkar, Targeting human dendritic cells in situ to improve vaccines. Immunol. Lett. 162(1 Pt A), 59–67 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  145. C.G. Figdor, Y. van Kooyk, G.J. Adema, C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2(2), 77–84 (2002)

    CAS  PubMed  Google Scholar 

  146. K. Fytianos et al., Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano 11(1), 375–383 (2017)

    CAS  PubMed  Google Scholar 

  147. S.T. Jahan, S.M. Sadat, A. Haddadi, Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. Int. J. Nanomedicine 13, 367–386 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  148. J. Tel et al., Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J. Immunol. 191(10), 5005–5012 (2013)

    CAS  PubMed  Google Scholar 

  149. E. Yuba et al., Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 120, 32–45 (2017)

    CAS  PubMed  Google Scholar 

  150. Y. Qian et al., Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials 98, 171–183 (2016)

    CAS  PubMed  Google Scholar 

  151. M.A. Shevtsov et al., 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J. Control. Release 220(Pt A), 329–340 (2015)

    CAS  PubMed  Google Scholar 

  152. Y. Ma et al., The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 3(5), 2307–2314 (2011)

    CAS  PubMed  Google Scholar 

  153. C.A. Fromen et al., Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine 12(3), 677–687 (2016)

    CAS  PubMed  Google Scholar 

  154. Y. Li et al., Surface hydrophobicity of microparticles modulates adjuvanticity. J. Mater. Chem. B 1(32), 3888–3896 (2013)

    Google Scholar 

  155. F. Shima et al., Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials 34(37), 9709–9716 (2013)

    CAS  PubMed  Google Scholar 

  156. Y. Min et al., Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12(9), 877–882 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  157. V. Schuette, S. Burgdorf, The ins-and-outs of endosomal antigens for cross-presentation. Curr. Opin. Immunol. 26, 63–68 (2014)

    CAS  PubMed  Google Scholar 

  158. N.I. Ho et al., Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Front. Immunol. 9, 2874 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Y. Mukai et al., Induction of endoplasmic reticulum-endosome fusion for antigen cross-presentation induced by poly (gamma-glutamic acid) nanoparticles. J. Immunol. 187(12), 6249–6255 (2011)

    CAS  PubMed  Google Scholar 

  160. C. Zhang et al., Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J. Control. Release 256, 170–181 (2017)

    CAS  PubMed  Google Scholar 

  161. F. Cao et al., Photothermally controlled MHC class I restricted CD8(+) T-cell responses elicited by hyaluronic acid decorated gold nanoparticles as a vaccine for cancer immunotherapy. Adv. Healthc. Mater. 7(10), 1701439–1701451 (2018)

    Google Scholar 

  162. A. Warnatsch, T. Bergann, E. Kruger, Oxidation matters: the ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation. Mol. Immunol. 55(2), 106–109 (2013)

    CAS  PubMed  Google Scholar 

  163. Y. Lu et al., Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and co-delivery platform for enhanced cancer immunotherapy. Biomaterials 175, 82–92 (2018)

    CAS  PubMed  Google Scholar 

  164. W.W. Unger et al., Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J. Control. Release 160(1), 88–95 (2012)

    CAS  PubMed  Google Scholar 

  165. H. Li et al., Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6(10), 645–650 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  166. S. Wang et al., Exploration of antigen induced CaCO3 nanoparticles for therapeutic vaccine. Small 14(14), 1704272–1704280 (2018)

    Google Scholar 

  167. B.J. Umlauf, C.Y. Chung, K.C. Brown, Modular three-component delivery system facilitates HLA class I antigen presentation and CD8(+) T-cell activation against tumors. Mol. Ther. 23(6), 1092–1102 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  168. N.M. Dold et al., A poly(beta-amino ester) activates macrophages independent of NF-kappaB signaling. Acta Biomater. 68, 168–177 (2018)

    CAS  PubMed  Google Scholar 

  169. T.D. Fernandez et al., Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 43, 1–12 (2015)

    CAS  PubMed  Google Scholar 

  170. M.A. Shahbazi et al., Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials 35(33), 9224–9235 (2014)

    CAS  PubMed  Google Scholar 

  171. J.I. Andorko, C.M. Jewell, Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng. Transl. Med. 2(2), 139–155 (2017)

    PubMed  PubMed Central  Google Scholar 

  172. C.A. Da Silva et al., Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J. Immunol. 182(6), 3573–3582 (2009)

    PubMed  Google Scholar 

  173. S. Kumar et al., Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release 220(Pt A), 141–148 (2015)

    CAS  PubMed  Google Scholar 

  174. R. Kedmi, N. Ben-Arie, D. Peer, The systemic toxicity of positively charged lipid nanoparticles and the role of toll-like receptor 4 in immune activation. Biomaterials 31(26), 6867–6875 (2010)

    CAS  PubMed  Google Scholar 

  175. M. Henriksen-Lacey et al., Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3beta-[N-(N',N'-Dimethylaminoethane)carbomyl] cholesterol (DC-Chol), and 1,2-Dioleoyl-3-trimethylammonium propane (DOTAP): prolonged liposome retention mediates stronger Th1 responses. Mol. Pharm. 8(1), 153–161 (2011)

    CAS  PubMed  Google Scholar 

  176. D.F. Moyano et al., Nanoparticle hydrophobicity dictates immune response. J. Am. Chem. Soc. 134(9), 3965–3967 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Y. Kakizawa et al., Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands. Acta Biomater. 57, 136–145 (2017)

    CAS  PubMed  Google Scholar 

  178. Y. Zhang et al., Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways. Nanoscale 5(13), 5919–5929 (2013)

    CAS  PubMed  Google Scholar 

  179. S.B. Lee et al., Antigen-free radionuclide-embedded gold nanoparticles for dendritic cell maturation, tracking, and strong antitumor immunity. Adv. Healthc. Mater., 1701369–1701379 (2018)

    Google Scholar 

  180. A.M. de Groot et al., Immunogenicity testing of lipidoids in vitro and in silico: modulating lipidoid-mediated TLR4 activation by nanoparticle design. Mol. Ther. Nucl. Acids 11, 159–169 (2018)

    Google Scholar 

  181. T. Tanaka et al., DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through toll-like receptor 4. Eur. J. Immunol. 38(5), 1351–1357 (2008)

    CAS  PubMed  Google Scholar 

  182. W. Yan, W. Chen, L. Huang, Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J. Control. Release 130(1), 22–28 (2008)

    CAS  PubMed  Google Scholar 

  183. Z. Chen et al., Polyhydroxylated metallofullerenols stimulate IL-1β secretion of macrophage through TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation. Small. 10 (12), 2362–2372 (2014)

    Google Scholar 

  184. H.W. Despres et al., Mechanisms of the immune response cause by cationic and anionic surface functionalized cellulose nanocrystals using cell-based assays. Toxicol. In Vitro 55, 124–133 (2019)

    CAS  PubMed  Google Scholar 

  185. R. Jin et al., Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like receptor-4 signaling. Biomaterials 203, 23–30 (2019)

    CAS  PubMed  Google Scholar 

  186. T. Shen et al., Lactosylated N-alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. Regen. Biomater. 5(3), 141–149 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  187. C. Gouttefangeas, H.G. Rammensee, Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol. Immunother. 67(12), 1911–1918 (2018)

    CAS  PubMed  Google Scholar 

  188. C. Wang et al., Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine 30(32), 4790–4799 (2012)

    CAS  PubMed  Google Scholar 

  189. L. Nuhn et al., Nanoparticle-conjugate TLR7/8 agonist localized immunotherapy provokes safe antitumoral responses. Adv. Mater. 30(45), 1803397–1803406 (2018)

    Google Scholar 

  190. I. Mottas et al., Amphiphilic nanoparticle delivery enhances the anticancer efficacy of a TLR7 ligand via local immune activation. Biomaterials 190-191, 111–120 (2019)

    CAS  PubMed  Google Scholar 

  191. G. Zhu et al., DNA-inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale 8(12), 6684–6692 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  192. A. Ruiz-de-Angulo et al., Microdosed lipid-coated (67)Ga-magnetite enhances antigen-specific immunity by image tracked delivery of antigen and CpG to lymph nodes. ACS Nano 10(1), 1602–1618 (2016)

    CAS  PubMed  Google Scholar 

  193. Y. Fan et al., Immunogenic cell death amplified by co-localized adjuvant delivery for cancer immunotherapy. Nano Lett. 17(12), 7387–7393 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  194. A. Li et al., Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 12(1), 35–42 (2019)

    PubMed  PubMed Central  Google Scholar 

  195. D.R. Wilson et al., Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine 14(2), 237–246 (2018)

    CAS  PubMed  Google Scholar 

  196. D. Shae et al., Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14(3), 269–278 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  197. M.E. Jacobson et al., Delivery of 5′-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomater. Sci. 7(2), 547–559 (2019)

    CAS  PubMed  Google Scholar 

  198. M. Das et al., Nanoparticle delivery of RIG-I agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol. Ther. 27(3), 507–517 (2019)

    CAS  PubMed  Google Scholar 

  199. K. Maisel et al., Exploiting lymphatic vessels for immunomodulation: rationale, opportunities, and challenges. Adv. Drug Deliv. Rev. 114, 43–59 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  200. S.N. Thomas, N.A. Rohner, E.E. Edwards, Implications of lymphatic transport to lymph nodes in immunity and immunotherapy. Annu. Rev. Biomed. Eng. 18, 207–233 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Y. Zhuang et al., PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J. Control. Release 159(1), 135–142 (2012)

    CAS  PubMed  Google Scholar 

  202. S.Y. Kim et al., Synthetic vaccine nanoparticles target to lymph node triggering enhanced innate and adaptive antitumor immunity. Biomaterials 130, 56–66 (2017)

    CAS  PubMed  Google Scholar 

  203. N.L. Trevaskis, L.M. Kaminskas, C.J. Porter, From sewer to saviour—targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14(11), 781–803 (2015)

    CAS  PubMed  Google Scholar 

  204. I. Singh et al., Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin. Drug Deliv. 11(2), 211–229 (2014)

    CAS  PubMed  Google Scholar 

  205. M. Henriksen-Lacey et al., Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J. Control. Release 145(2), 102–108 (2010)

    CAS  PubMed  Google Scholar 

  206. C. Wang et al., Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory. Vaccine 32(42), 5475–5483 (2014)

    CAS  PubMed  Google Scholar 

  207. F. Xu et al., Lipid-mediated targeting with membrane-wrapped nanoparticles in the presence of Corona formation. ACS Nano 10(1), 1189–1200 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  208. J. Jin et al., Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl. Mater. Interfaces 11(8), 7850–7861 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  209. S.N. Thomas et al., Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35(2), 814–824 (2014)

    CAS  PubMed  Google Scholar 

  210. L. Jeanbart et al., Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2(5), 436–447 (2014)

    CAS  PubMed  Google Scholar 

  211. J.I. Andorko et al., Targeted programming of the lymph node environment causes evolution of local and systemic immunity. Cell. Mol. Bioeng. 9, 418–432 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  212. A.J. Oliver et al., Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Front. Immunol. 9, 70 (2018)

    PubMed  PubMed Central  Google Scholar 

  213. L. Labanieh, R.G. Majzner, C.L. Mackall, Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2(6), 377–392 (2017)

    Google Scholar 

  214. B. Wegiel et al., Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy. Front. Oncol. 8, 284 (2018)

    PubMed  PubMed Central  Google Scholar 

  215. J.M. Tran Janco et al., Tumor-infiltrating dendritic cells in cancer pathogenesis. J. Immunol. 194(7), 2985–2991 (2015)

    PubMed  Google Scholar 

  216. S. Warashina et al., A lipid nanoparticle for the efficient delivery of siRNA to dendritic cells. J. Control. Release 225, 183–191 (2016)

    CAS  PubMed  Google Scholar 

  217. C. Ngambenjawong, H.H. Gustafson, S.H. Pun, Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 114, 206–221 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Y. Qian et al., Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11(9), 9536–9549 (2017)

    CAS  PubMed  Google Scholar 

  219. C.B. Rodell et al., TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2(8), 578–588 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  220. L. Liu et al., Tumor associated macrophage-targeted microRNA delivery with dual-responsive polypeptide nanovectors for anti-cancer therapy. Biomaterials 134, 166–179 (2017)

    CAS  PubMed  Google Scholar 

  221. N.N. Parayath, A. Parikh, M.M. Amiji, Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett. 18(6), 3571–3579 (2018)

    CAS  PubMed  Google Scholar 

  222. J. Tang et al., Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine 12(4), 945–954 (2016)

    CAS  PubMed  Google Scholar 

  223. C. Shi et al., Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration. Nano Lett. 18(11), 7330–7342 (2018)

    CAS  PubMed  Google Scholar 

  224. Y. Liu et al., Targeting myeloid-derived suppressor cells for cancer immunotherapy. Cancer Immunol. Immunother. 67(8), 1181–1195 (2018)

    CAS  PubMed  Google Scholar 

  225. M.S. Sasso et al., Low dose gemcitabine-loaded lipid nanocapsules target monocytic myeloid-derived suppressor cells and potentiate cancer immunotherapy. Biomaterials 96, 47–62 (2016)

    CAS  PubMed  Google Scholar 

  226. Y. Zhang et al., Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials 189, 48–59 (2019)

    CAS  PubMed  Google Scholar 

  227. L. Jeanbart et al., 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice. Cancer Immunol. Immunother. 64(8), 1033–1046 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  228. H. Nishikawa, S. Sakaguchi, Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 27, 1–7 (2014)

    CAS  PubMed  Google Scholar 

  229. H. Jonuleit, T. Bopp, C. Becker, Treg cells as potential cellular targets for functionalized nanoparticles in cancer therapy. Nanomedicine (Lond.) 11(20), 2699–2709 (2016)

    CAS  Google Scholar 

  230. S.Y. Li et al., Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J. Control. Release 231, 17–28 (2016)

    CAS  PubMed  Google Scholar 

  231. W. Ou et al., Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J. Control. Release 281, 84–96 (2018)

    CAS  PubMed  Google Scholar 

  232. W. Ou et al., Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. Theranostics 8(17), 4574–4590 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  233. P.Y. Teo et al., Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv. Healthc. Mater. 4(8), 1180–1189 (2015)

    CAS  PubMed  Google Scholar 

  234. X. Guan et al., Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. J. Control. Release 293, 104–112 (2019)

    CAS  PubMed  Google Scholar 

  235. X. Zhang et al., PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 30(22), 1707112–1707122 (2018)

    Google Scholar 

  236. H. Ruan et al., A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv. Mater. 31(17), 1806957–1806965 (2019)

    Google Scholar 

  237. G.C. Prendergast et al., Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol. Immunother. 63(7), 721–735 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  238. D.Q. Liu et al., An indoleamine 2, 3-dioxygenase siRNA nanoparticle-coated and Trp2-displayed recombinant yeast vaccine inhibits melanoma tumor growth in mice. J. Control. Release 273, 1–12 (2018)

    CAS  PubMed  Google Scholar 

  239. K. Cheng et al., Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett. 18(5), 3250–3258 (2018)

    CAS  PubMed  Google Scholar 

  240. Z. Luo et al., Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy. Sci. Rep. 6, 23393 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  241. G. Song et al., Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 28(14), 2716–2723 (2016)

    CAS  PubMed  Google Scholar 

  242. Z. Chen et al., Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and Abscopal effect. ACS Nano 12(8), 8633–8645 (2018)

    CAS  PubMed  Google Scholar 

  243. H. Inoue, K. Tani, Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 21(1), 39–49 (2014)

    CAS  PubMed  Google Scholar 

  244. R. Liang et al., Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials 177, 149–160 (2018)

    CAS  PubMed  Google Scholar 

  245. H. Zhu et al., Oxygenic hybrid semiconducting nanoparticles for enhanced photodynamic therapy. Nano Lett. 18(1), 586–594 (2018)

    CAS  PubMed  Google Scholar 

  246. D. Zheng et al., Normalizing tumor microenvironment based on photosynthetic abiotic/biotic nanoparticles. ACS Nano 12(6), 6218–6227 (2018)

    CAS  PubMed  Google Scholar 

  247. H. Pan et al., Glycometabolic bioorthogonal chemistry-guided viral transduction for robust human T cell engineering. Adv. Funct. Mater. 1807528, 1–9 (2019)

    Google Scholar 

  248. T.T. Smith et al., In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12(8), 813–820 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  249. W. Li et al., Bio-orthogonal T cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small 15(4), 1804383–1804389 (2019)

    Google Scholar 

  250. E. Lanitis et al., Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann. Oncol. 28(suppl_12), xii18–xii32 (2017)

    CAS  PubMed  Google Scholar 

  251. V. Mollica Poeta et al., Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front. Immunol. 10, 379 (2019)

    PubMed  PubMed Central  Google Scholar 

  252. J. He et al., Folate-modified chitosan nanoparticles containing the IP-10 gene enhance melanoma-specific cytotoxic CD8(+)CD28(+) T lymphocyte responses. Theranostics 6(5), 752–761 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  253. J.A. Joyce, D.T. Fearon, T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230), 74–80 (2015)

    CAS  PubMed  Google Scholar 

  254. Q. Chen et al., Photothermal therapy promotes tumor infiltration and antitumor activity of CAR T cells. Adv. Mater. 31(23), 1900192–1900199 (2019)

    Google Scholar 

  255. Z. Zhou et al., Perfluorocarbon nanoparticle-mediated platelet inhibition promotes intratumoral infiltration of T cells and boosts immunotherapy. Proc. Natl. Acad. Sci. U. S. A. 116(24), 11972–11977 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  256. I. Mellman, G. Coukos, G. Dranoff, Cancer immunotherapy comes of age. Nature 480(7378), 480–489 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Y.S. Yang et al., Targeting small molecule drugs to T cells with antibody-directed cell-penetrating gold nanoparticles. Biomater. Sci. 7(1), 113–124 (2018)

    PubMed  PubMed Central  Google Scholar 

  258. D. Schmid et al., T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8(18), 1747–1759 (2017)

    PubMed  PubMed Central  Google Scholar 

  259. C. Wang et al., Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 28(40), 8912–8920 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Y. Mi et al., A dual immunotherapy nanoparticle improves T-cell activation and cancer immunotherapy. Adv. Mater. 30(25), 1706098–1706107 (2018)

    Google Scholar 

  261. A.K. Kosmides et al., Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano 11(6), 5417–5429 (2017)

    CAS  PubMed  Google Scholar 

  262. C.S. Chiang et al., Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol. 13, 746–754 (2018)

    CAS  PubMed  Google Scholar 

  263. M. Poupot et al., Poly(phosphorhydrazone) dendrimers: Yin and Yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. Nanomedicine 12(8), 2321–2330 (2016)

    CAS  PubMed  Google Scholar 

  264. P. Jiao et al., Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct. J. Mater. Chem. B 4(3), 513–520 (2016)

    CAS  PubMed  Google Scholar 

  265. C. Loftus et al., Activation of human natural killer cells by graphene oxide-templated antibody nanoclusters. Nano Lett. 18(5), 3282–3289 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  266. L. Wu et al., Magnetic delivery of Fe3O4@polydopamine nanoparticle-loaded natural killer cells suggest a promising anticancer treatment. Biomater. Sci. 6(10), 2714–2725 (2018)

    CAS  PubMed  Google Scholar 

  267. C.G. Drake, Combination immunotherapy approaches. Ann. Oncol. 23(Suppl 8), viii41–viii46 (2012)

    PubMed  PubMed Central  Google Scholar 

  268. A.G. Dalgleish, Rationale for combining immunotherapy with chemotherapy. Immunotherapy 7(3), 309–316 (2015)

    CAS  PubMed  Google Scholar 

  269. X.T. Li et al., Toward innovative combinational immunotherapy: a systems biology perspective. Cancer Treat. Rev. 68, 1–8 (2018)

    CAS  PubMed  Google Scholar 

  270. W. Wang et al., Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell 165(5), 1092–1105 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Y. Liu et al., Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. 66, 310–324 (2018)

    CAS  PubMed  Google Scholar 

  272. J. Lu et al., Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 8(1), 1811–1824 (2017)

    PubMed  PubMed Central  Google Scholar 

  273. B. Feng et al., Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 30(38), 1803001–1803010 (2018)

    Google Scholar 

  274. Y. Zhao et al., Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. J. Control. Release 269, 322–336 (2018)

    CAS  PubMed  Google Scholar 

  275. M. Wu et al., Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Appl. Mater. Interfaces 11(10), 9850–9859 (2019)

    CAS  PubMed  Google Scholar 

  276. L. Li et al., An endogenous vaccine based on fluorophores and multivalent immunoadjuvants regulates tumor micro-environment for synergistic photothermal and immunotherapy. Theranostics 8(3), 860–873 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  277. J. Cano-Mejia et al., Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine 13(2), 771–781 (2017)

    CAS  PubMed  Google Scholar 

  278. Q. Chen et al., Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  279. J. Xu et al., Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11(5), 4463–4474 (2017)

    CAS  PubMed  Google Scholar 

  280. B. Ding et al., Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy. Adv. Mater. 30(52), 1802479–1802488 (2018)

    Google Scholar 

  281. W. Song et al., Enhanced immunotherapy based on photodynamic therapy for both primary and lung metastasis tumor eradication. ACS Nano 12(2), 1978–1989 (2018)

    CAS  PubMed  Google Scholar 

  282. G. Yang et al., Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 8(1), 902–915 (2017)

    PubMed  PubMed Central  Google Scholar 

  283. A. Kheirolomoom et al., CpG expedites regression of local and systemic tumors when combined with activatable nanodelivery. J. Control. Release 220(Pt A), 253–264 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  284. C. He et al., Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat. Commun. 7, 12499–12511 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  285. M. Xu et al., Hollow mesoporous ruthenium nanoparticles conjugated bispecific antibody for targeted anti-colorectal cancer response of combination therapy. Nanoscale 11(19), 9661–9678 (2019)

    CAS  PubMed  Google Scholar 

  286. A.L. Shergold, R. Millar, R.J.B. Nibbs, Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol. Res. 145, 104258–104279 (2019)

    CAS  PubMed  Google Scholar 

  287. J. van den Bulk, E.M. Verdegaal, N.F. de Miranda, Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 8(6), 180037–180046 (2018)

    PubMed  PubMed Central  Google Scholar 

  288. K.T. Marcucci et al., Retroviral and Lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol. Ther. 26(1), 269–279 (2018)

    CAS  PubMed  Google Scholar 

  289. S. Tahmasebi, R. Elahi, A. Esmaeilzadeh, Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Rev. Rep. 15(5), 619–636 (2019)

    PubMed  Google Scholar 

  290. C.H. Chang, E.L. Pearce, Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17(4), 364–368 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  291. H.C. Hope, R.J. Salmond, Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur. J. Immunol. 49(8), 1147–1152 (2019)

    CAS  PubMed  Google Scholar 

  292. P.C. Ho, S.M. Kaech, Reenergizing T cell anti-tumor immunity by harnessing immunometabolic checkpoints and machineries. Curr. Opin. Immunol. 46, 38–44 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  293. N. Assmann, D.K. Finlay, Metabolic regulation of immune responses: therapeutic opportunities. J. Clin. Invest. 126(6), 2031–2039 (2016)

    PubMed  PubMed Central  Google Scholar 

  294. M. Lunova et al., Targeting the mTOR signaling pathway utilizing nanoparticles: a critical overview. Cancers (Basel) 11(1), 82–90 (2019)

    CAS  Google Scholar 

  295. H. Amani et al., Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci. Rep. 9(1), 6044–6053 (2019)

    PubMed  PubMed Central  Google Scholar 

  296. M. Sambi, L. Bagheri, M.R. Szewczuk, Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J. Oncol. 2019(4508794), 1–12 (2019)

    Google Scholar 

  297. J. Tsiaoussis et al., Effects of single and combined toxic exposures on the gut microbiome: current knowledge and future directions. Toxicol. Lett. 312, 72–97 (2019)

    CAS  PubMed  Google Scholar 

  298. L. Wang et al., Impact of short-term exposure of AuNCs on the gut microbiota of BALB/c mice. J. Biomed. Nanotechnol. 15(4), 779–789 (2019)

    CAS  PubMed  Google Scholar 

  299. D.W. Zheng et al., Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3(9), 717–728 (2019)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Y., Cai, L. (2020). Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology. In: Xu, H., Gu, N. (eds) Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5386-8_4

Download citation

Publish with us

Policies and ethics