Skip to main content

Multi-Adversarial Variational Autoencoder Nets for Simultaneous Image Generation and Classification

  • Chapter
  • First Online:
Deep Learning Applications, Volume 2

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1232))

Abstract

Discriminative deep-learning modelsĀ are often reliant on copious labeled training data. By contrast, from relativelyĀ small corpora of training data, deep generative models can learn to generate realistic images approximating real-world distributions. In particular, the proper training of Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs) enables them to perform semi-supervised image classification. Combining the power of these two models, we introduce Multi-Adversarial Variational autoEncoder Networks (MAVENs), a novel deep generative model that incorporates an ensemble of discriminators in a VAE-GAN network in order to perform simultaneous adversarial learning and variational inference. We apply MAVENs to the generation of synthetic images and propose a new distribution measure to quantify the quality of these images. Our experimental results with only 10% labeled training data from the computer vision and medical imaging domains demonstrate performance competitive to state-of-the-art semi-supervised models in simultaneous image generation and classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter significantly expands upon our ICMLA 2019 publication [15], which excluded our experiments on medical imaging datasets.

References

  1. M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN (2017). arXiv preprint arXiv:1701.07875

  2. C. Bermudez, A.J. Plassard, L.T. Davis, A.T. Newton, S.M. Resnick, B.A. Landman, Learning implicit brain MRI manifolds with deep learning, in Medical Imaging 2018: Image Processing, vol. 10574 (2018), p. 105741L

    Google ScholarĀ 

  3. F. Calimeri, A. Marzullo, C. Stamile, G. Terracina, Biomedical data augmentation using generative adversarial neural networks, in International Conference on Artificial Neural Networks (2017), pp. 626ā€“634

    Google ScholarĀ 

  4. M.J. Chuquicusma, S. Hussein, J. Burt, U. Bagci, How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis, in IEEE International Symposium on Biomedical Imaging (ISBI) (2018), pp. 240ā€“244

    Google ScholarĀ 

  5. N.C. Codella, D. Gutman, M.E. Celebi, B. Helba, M.A. Marchetti, S.W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler etĀ al., Skin lesion analysis toward melanoma detection: a challenge at the 2017 ISBI, hosted by ISIC, in IEEE International Symposium on Biomedical Imaging (ISBI 2018) (2018), pp. 168ā€“172

    Google ScholarĀ 

  6. E.L. Denton, S. Chintala, A. Szlam, R. Fergus, Deep generative image models using a Laplacian pyramid of adversarial networks, in Advances in Neural Information Processing Systems (NeurIPS) (2015)

    Google ScholarĀ 

  7. I. Durugkar, I. Gemp, S. Mahadevan, Generative multi-adversarial networks (2016). arXiv preprint arXiv:1611.01673

  8. M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, H. Greenspan, GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification (2018). arXiv preprint arXiv:1803.01229

  9. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems (NeurIPS) (2014), pp. 2672ā€“2680

    Google ScholarĀ 

  10. J.T. Guibas, T.S. Virdi, P.S. Li, Synthetic medical images from dual generative adversarial networks (2017). arXiv preprint arXiv:1709.01872

  11. C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu, Y. Furukawa, G. Mauri, H. Nakayama, GAN-based synthetic brain MR image generation, in IEEE International Symposium on Biomedical Imaging (ISBI) (2018), pp. 734ā€“738

    Google ScholarĀ 

  12. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, GANs trained by a two time-scale update rule converge to a local Nash equilibrium, in Advances in Neural Information Processing Systems (NeurIPS) (2017), pp. 6626ā€“6637

    Google ScholarĀ 

  13. L. Hou, A. Agarwal, D. Samaras, T.M. Kurc, R.R. Gupta, J.H. Saltz, Unsupervised histopathology image synthesis (2017). arXiv preprint arXiv:1712.05021

  14. A.A.Z. Imran, P.R. Bakic, A.D. Maidment, D.D. Pokrajac, Optimization of the simulation parameters for improving realism in anthropomorphic breast phantoms, in Proceedings of the SPIE, vol. 10132 (2017)

    Google ScholarĀ 

  15. A.A.Z. Imran, D. Terzopoulos, Multi-adversarial variational autoencoder networks, in IEEE International Conference on Machine Learning and Applications (ICMLA) (oca Raton, FL, 2019), pp. 777ā€“782

    Google ScholarĀ 

  16. A.A.Z. Imran, D. Terzopoulos, Semi-supervised multi-task learning with chest X-ray images (2019). arXiv preprint arXiv:1908.03693

  17. D.S. Kermany, M. Goldbaum, W. Cai, C.C. Valentim, H. Liang, S.L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan et al., Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122ā€“1131 (2018)

    ArticleĀ  Google ScholarĀ 

  18. D.P. Kingma, M. Welling, Auto-encoding variational Bayes (2013). arXiv preprint arXiv:1312.6114

  19. A. Krizhevsky, Learning multiple layers of features from tiny images. Masterā€™s thesis, University of Toronto, Dept. of Computer Science (2009)

    Google ScholarĀ 

  20. A. Madani, M. Moradi, A. Karargyris, T. Syeda-Mahmood, Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation, in IEEE International Symposium on Biomedical Imaging (ISBI) (2018), pp. 1038ā€“1042

    Google ScholarĀ 

  21. A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial autoencoders (2015). arXiv preprint arXiv:1511.05644

  22. T. Miyato, T. Kataoka, M. Koyama, Y. Yoshida, Spectral normalization for generative adversarial networks (2018). arXiv preprint arXiv:1802.05957

  23. G. Mordido, H. Yang, C. Meinel, Dropout-GAN: learning from a dynamic ensemble of discriminators (2018). arXiv preprint arXiv:1807.11346

  24. Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in natural images with unsupervised feature learning, in NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011 (2011), pp. 1ā€“9

    Google ScholarĀ 

  25. B. Neyshabur, S. Bhojanapalli, A. Chakrabarti, Stabilizing GAN training with multiple random projections (2017). arXiv preprint arXiv:1705.07831

  26. T. Nguyen, T. Le, H. Vu, D. Phung, Dual discriminator generative adversarial nets, in Advances in Neural Information Processing Systems (NeurIPS) (2017), pp. 2670ā€“2680

    Google ScholarĀ 

  27. A. dena, C. Olah, J. Shlens, Conditional image synthesis with auxiliary classifier GANs (2017). arXiv preprint arXiv:1610.09585

  28. G. Ostrovski, W. Dabney, R. Munos, Autoregressive quantile networks for generative modeling (2018). arXiv preprint arXiv:1806.05575

  29. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv preprint arXiv:1511.06434

  30. S. Ravuri, S. Mohamed, M. Rosca, O. Vinyals, Learning implicit generative models with the method of learned moments (2018). arXiv preprint arXiv:1806.11006

  31. H. Salehinejad, S. Valaee, T. Dowdell, E. Colak, J. Barfett, Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018), pp. 990ā€“994

    Google ScholarĀ 

  32. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training GANs, in Advances in Neural Information Processing Systems (NeurIPS) (2016), pp. 2234ā€“2242

    Google ScholarĀ 

  33. J.T. Springenberg, Unsupervised and semi-supervised learning with categorical generative adversarial networks (2015). arXiv preprint arXiv:1511.06390

  34. T. Unterthiner, B. Nessler, C. Seward, G. Klambauer, M. Heusel, H. Ramsauer, S. Hochreiter, Coulomb GANs: provably optimal nash equilibria via potential fields (2017). arXiv preprint arXiv:1708.08819

  35. S. Wang, L. Zhang, CatGAN: coupled adversarial transfer for domain generation (2017). arXiv preprint arXiv:1711.08904

  36. M.A. Wani, F.A. Bhat, S. Afzal, A.I. Khan (eds.), Advances in Deep Learning (Springer, 2020)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah-Al-Zubaer Imran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imran, AAZ., Terzopoulos, D. (2021). Multi-Adversarial Variational Autoencoder Nets for Simultaneous Image Generation and Classification. In: Wani, M.A., Khoshgoftaar, T.M., Palade, V. (eds) Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing, vol 1232. Springer, Singapore. https://doi.org/10.1007/978-981-15-6759-9_11

Download citation

Publish with us

Policies and ethics