Skip to main content

Bioremediation of Polluted Soil by Using Plant Growth–Promoting Rhizobacteria

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 25))

Abstract

Soil pollution generally causes huge losses in the world’s agricultural output, and therefore, soil pollution control is essential in agriculture crop production system. For soil pollution management, we usually reduce the use of chemical fertilizers, manures, and pesticide, reuse the domestic waste product materials such as glass containers, plastic bags, paper, and cloth, and recycle the materials such as some kinds of plastics and glass cane, but their indiscriminate use causes environmental problems and human health hazards. Moreover, the continuous use of those products without safe disposal leads to soil pollution. Thus, bioremediation of soil pollution is an alternate eco-friendly method for soil pollution management, in which plant growth–promoting rhizobacteria are used in alleviating the contaminated soil. Many rhizosphere microorganisms including Azotobacter spp., Pseudomonas aeruginosa, Glomus spp., Acaulospora spp., Scutellospora spp., Streptomyces spp., Klebsiella spp., Lysobacter spp., Rhizobium leguminosarum, Burkholderia spp., Diaphorobacter nitroreducens, Planomicrobium chinense, Promicromonospora spp., Mesorhizobium spp., Psychrobacillus psychrodurans, Pantoea spp., Arthrobacter spp., and Variovorax spp. have been found as plant growth–promoting rhizobacteria. These PGPR have been found to bioremediate the polluted soil by using various types of mechanisms such as through siderophore production, phosphate solubilization, biological nitrogen fixation, production of 1-aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing, signal interference and phytohormone production, exhibiting antifungal activity, production of volatile organic compounds, and induction of systemic resistance, promoting beneficial plant-–microbe symbioses. Thus, there are immense possibilities for identifying other growth-promoting rhizobacteria that could help in bioremediation of polluted soil as well as promote sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2016) Mixed planting with a leguminous plant outperforms bacteria in promoting growth of a metal remediating plant through histidine synthesis. Int J Phytoremed 18(7):720–729

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eur Asian J Biol Sci 4:88–95

    CAS  Google Scholar 

  • Ajuzieogu CA, Ibiene AA, Stanley HO (2015) Laboratory study on influence of plant growth promoting rhizobacteria (PGPR) on growth response and tolerance of Zea mays to petroleum hydrocarbon. Afr J Biotechnol 14(43):2949–2956

    Article  CAS  Google Scholar 

  • Ali SM, Pervaiz A, Afzal B, Hamid N, Yasmin A (2014) Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. J King Saud Univ Sci 26(1):59–65

    Article  Google Scholar 

  • Annapurna K, Kumar A, Kumar LV, Govindasamy V, Bose P, Ramadoss D (2013) PGPR-induced systemic resistance (ISR) in plant disease management. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 405–425

    Chapter  Google Scholar 

  • Antony R, Sujith PP, Sheryl OF, Pankaj V, Khedekar VD, Loka Bharathi PA (2011) Cobalt immobilization by manganese oxidizing bacteria from Indian Ridge System. Curr Microbiol 62:840–849

    Article  CAS  PubMed  Google Scholar 

  • Asad SA (2017) Soil–PCB–PGPR interactions in changing climate scenarios. In: Xenobiotics in the soil environment. Springer, Cham, pp 281–298

    Chapter  Google Scholar 

  • Aung HP, Djedidi S, Oo AZ, Aye YS, Yokoyama T, Suzuki S, Sekimoto H, Bellingrath-Kimura SD (2015) Growth and 137Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan. Sci Total Environ 521:261–269

    Article  PubMed  CAS  Google Scholar 

  • Awad E, Zhang X, Bhavsar SP, Petro S, Crozier PW, Reiner EJ, Fletcher R, Tittlemier SA, Braekevelt E (2011) Long-term environmental fate of perfluorinated compounds after accidental release at Toronto airport. Environ Sci Technol 45(19):8081–8089

    Article  CAS  PubMed  Google Scholar 

  • Bacosa HP, Inoue C (2015) Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan. J Hazard Mater 283:689–697

    Article  CAS  PubMed  Google Scholar 

  • Begum BA, Biswas SK, Pandit GG, Saradhi IV, Waheed S, Siddique N, Seneviratne MS, Cohen DD, Markwitz A, Hopke PK (2011) Long–range transport of soil dust and smoke pollution in the South Asian region. Atmos Pollut Res 2(2):151–157

    Article  CAS  Google Scholar 

  • Bezza FA, Chirwa EMN (2017) The role of lipopeptide biosurfactant on microbial remediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Chem Eng J 309:563–576

    Article  CAS  Google Scholar 

  • Bhakat K, Chakraborty A, Islam E (2019) Characterization of arsenic oxidation and uranium bioremediation potential of arsenic resistant bacteria isolated from uranium ore. Environ Sci Pollut Res 26(13):12907–12919

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19(4):269–279

    Article  CAS  Google Scholar 

  • Cardón DL, Villafán SM, Tovar AR, Jiménez SP, Zúñiga LAG, Allieri MAA, Pérez NO, Dorantes AR (2010) Growth response and heavy metals tolerance of Axonopusaffinis, inoculated with plant growth promoting rhizobacteria. Afr J Biotechnol 9:8772–8782

    Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33(2):440–459

    Article  CAS  Google Scholar 

  • Cetin SC, Karaca A, Kizilkaya R, Turgay OC (2011) Role of plant growth promoting bacteria and fungi in heavy metal detoxification. In: Detoxification of heavy metals. Springer, Berlin, Heidelberg, pp 369–388

    Google Scholar 

  • Chen J, Li S, Xu B, Su C, Jiang Q, Zhou C, Jin Q, Zhao Y, Xiao M (2017a) Characterization of Burkholderia sp. XTB-5 for phenol degradation and plant growth promotion and its application in bioremediation of contaminated soil. Land Degrad Dev 28(3):1091–1099

    Article  Google Scholar 

  • Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017b) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413(1-2):203–216

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59:8–15

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1

    Article  CAS  Google Scholar 

  • Chitara MK, Keswani C, Bisen K, Singh V, Singh SP, Sarma BK, Singh HB (2017) 16 Improving crop performance under heat stress using thermotolerant agriculturally important microorganisms. In: Advances in PGPR Research, p 296

    Chapter  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470

    Article  CAS  PubMed  Google Scholar 

  • Das AJ, Kumar R (2016) Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria. J Environ Manag 174:79–86

    Article  CAS  Google Scholar 

  • Dombkowski AA, Sultana KZ, Craig DB (2014) Protein disulfide engineering. FEBS Lett 588(2):206–212

    Article  CAS  PubMed  Google Scholar 

  • Drigo B, van Veen JA, Pijl AS, Boschker HTS, Bodelier PLE, Whiteley AS, Kowalchuk GA (2009) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Gewasbescherming 40(1):23

    Google Scholar 

  • El-Syed OH, Refaat HM, Swellam MA, Amer MM, Attwa AI, El-Awady ME (2011) Bioremediation of zinc by Streptomyces aureofacienes. J Appl Sci 11:873–877

    Article  CAS  Google Scholar 

  • Fan X, Liu X, Huang R, Liu Y (2012) Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Factories 11:33–37

    Article  CAS  Google Scholar 

  • Gangola S, Kumar R, Sharma A, Singh H (2017) Bioremediation of petrol engine oil polluted soil using microbial consortium and wheat crop. J Pure Appl Microbiol 11(3):1583–1588

    Article  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35(4):1000–1012

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (TriticumaestivumL.) rhizosphere. Plant Soil 414(1-2):213–227

    Article  CAS  Google Scholar 

  • Gunawardena J, Egodawatta P, Ayoko GA, Goonetilleke A (2013) Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos Environ 68:235–242

    Article  CAS  Google Scholar 

  • Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of Chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res 35(17):4079–4085

    Article  CAS  PubMed  Google Scholar 

  • Hassen W, Neifar M, Cherif H, Najjari A, Chouchane H, Driouich RC, Salah A, Naili F, Mosbah A, Souissi Y, Raddadi N (2018) Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front Microbiol 9:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazotte A, Péron O, Gaudin P, Abdelouas A, Lebeau T (2018) Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics. Environ Sci Pollut Res 25(21):20680–20690

    Article  CAS  Google Scholar 

  • Heinzerling A, Hsu J, Yip F (2016) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227(1):32

    Article  PubMed  CAS  Google Scholar 

  • Holloway P, Knoke KL, Trevors JT, Lee H (1998) Alteration of the substrate range of haloalkane dehalogenase by site directed mutagenesis. Biotechnol Bioeng 59:520–523

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Liu W, Wang B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–598

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Huang XJ, Chen XH, Cai QY, Chen S, Mo CH, Lü H, Wong MH (2018) Biodegradation of di-butyl phthalate (DBP) by a novel endophytic bacterium Bacillus subtilis and its bioaugmentation for removing DBP from vegetation slurry. J Environ Manag 224:1–9

    Article  CAS  Google Scholar 

  • Huq SMI, Abdullah MB, Joardar JC (2007) Bioremediation of arsenic toxicity by algae in rice culture. Land Contam Reclam 15:327–333

    Article  Google Scholar 

  • Ingle RW, Deshmukh VV (2010) Antifungal activity of PGPR and sensitivity to agrochemicals. Ann Plant Prot Sci 18(2):451–457

    Google Scholar 

  • Jabeen H, Iqbal S, Ahmad F, Afzal M, Firdous S (2016) Enhanced remediation of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial endophyte Mezorhizobium sp. HN3. Int J Phytoremed 18(2):126–133

    Article  CAS  Google Scholar 

  • Jayabarath J, Shyam SS, Arulmurugan R, Giridhar R (2009) Bioremediation of heavy metals using biosurfactants. Int J Biotechnol Appl 1:50–54

    Article  Google Scholar 

  • Jayashree R, Nithya SE, Rajesh PP, Krishnaraju M (2012) Biodegradation capability of bacterial species isolated from oil contaminated soil. J Academia Indust Res 1(3):127–135

    Google Scholar 

  • Jha Y, Subramanian RB (2014) PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol Mol Biol Plants 20(2):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KJ, Ams DA, Wedel AN, Szymanowski JES, Weber DL, Schneegurt MA, Fein JB (2007) The impact of metabolic state on Cd adsorption onto bacterial cells. Geobiology 5:211–218

    Article  CAS  Google Scholar 

  • Joseph B, Ranjan Patra R, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152

    Google Scholar 

  • Joshi N (2018) Bioremediation of heavy metals and organic pollutants through green technology. Int J Adv Sci Res 3(2):01–04

    Google Scholar 

  • Jury WA, Roth K (1990) Transferfunctions and solute movement through soil: theory and applications. Birkhäuser Verlag AG, Basel

    Google Scholar 

  • Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumissativus. J Plant Interact 9(1):673–682

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2016a) Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater. Int J Phytoremed 18(12):1258–1269

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2016b) Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytoremed 18(3):211–221

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kim SU, Cheong YH, Seo DC, Hu JS, Heo JS, Cho JS (2007) Characterization of heavy metal tolerance and biosorption capacity of bacterium strains CPB4 (Bacillus Sp.). Water Sci Technol 55(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Kim KE, Jung JE, Lee Y, Lee DS (2018) Ranking surface soil pollution potential of chemicals from accidental release by using two indicators calculated with a multimedia model (SoilPCA). Ecol Indic 85:664–673

    Article  CAS  Google Scholar 

  • Koffas M, Roberge C, Lee K, Stephanopoulos G (1999) Metabolic engineering. Annu Rev Biomed Eng 1:535–557

    Article  CAS  PubMed  Google Scholar 

  • Kotoky R, Das S, Singha LP, Pandey P, Singha KM (2017) Biodegradation of Benzo (a) pyrene by biofilm forming and plant growth promoting Acinetobacter sp. strain PDB4. Environ Technol Innov 8:256–268

    Article  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73(2):156–158

    Article  CAS  Google Scholar 

  • Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2010) Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 6(2):115–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R (2016) Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils. Environ Technol Innov 6:204–219

    Article  Google Scholar 

  • Langella F, Grawunder A, Stark R, Weist A, Merten D, Haferburg G, Büchel G, Kothe E (2014) Microbially assisted phytoremediation approaches for two multi-element contaminated sites. Environ Sci Pollut Res 21(11):6845–6858

    Article  CAS  Google Scholar 

  • Leung M (2004) Bioremediation: techniques for cleaning up a mess. J Biotechnol 2:18–22

    Google Scholar 

  • Liu JL, Xie BM, Shi XH, Ma JM, Guo CH (2015) Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil. Int J Environ Sci Technol 12(12):3887–3894

    Article  CAS  Google Scholar 

  • Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass. Biodegradation 8:275–285

    Article  CAS  Google Scholar 

  • Marchand L, Mench M, Jacob D, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  PubMed  Google Scholar 

  • Math RK, Islam SMA, Cho KM, Hong SJ, Kim JM, Yun MG, Cho JJ, Heo JY, Lee YH, Kim H, Yun HD (2010) Isolation of a novel gene encoding a 3, 5, 6-trichloro-2-pyridinol degrading enzyme from a cow rumen metagenomic library. Biodegradation 21(4):565–573

    Article  CAS  PubMed  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    Article  CAS  PubMed  Google Scholar 

  • Mirsal IA (2008) Soil pollution. Springer, New York, NY

    Google Scholar 

  • Mishra RK, Mohammad N, Roychoudhury N (2015) Soil pollution: causes, effects and control. Trop For Res Inst 3(1):20–30

    Google Scholar 

  • Mishra V, Gupta A, Kaur P, Singh S, Singh N, Gehlot P, Singh J (2016) Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils. Int J Phytoremed 18(7):697–703

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55(3):263–283

    Article  CAS  PubMed  Google Scholar 

  • Nyenje PM, Foppen JW, Kulabako R, Muwanga A, Uhlenbrook S (2013) Nutrient pollution in shallow aquifers underlying pit latrines and domestic solid waste dumps in urban slums. J Environ Manag 122:15–24

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504

    Article  PubMed Central  CAS  Google Scholar 

  • Pant R, Pandey P, Kotoky R (2016) Rhizosphere mediated biodegradation of 1, 4-dichlorobenzene by plant growth promoting rhizobacteria of Jatrophacurcas. Ecol Eng 94:50–56

    Article  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54:286

    CAS  PubMed  Google Scholar 

  • Pazirandeh M, Wells BM, Ryan RL (1998) Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Google Scholar 

  • Pinedo J, Ibáñez R, Lijzen JP, Irabien A (2013) Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances. J Environ Manag 130:72–79

    Article  CAS  Google Scholar 

  • Podile AR, Vukanti RV, Sravani A, Kalam S, Dutta S, Durgeshwar P, Rao VP (2014) Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion. Proc Indian Natl Sci Acad 80(2):407–413

    Article  Google Scholar 

  • Pratibha Y, Krishna SS (2015) Plant growth promoting Rhizobacteria: an effective tool to remediate residual organophosphate pesticide methyl parathion, widely used in Indian agriculture. J Environ Res Dev 9(4):1138

    CAS  Google Scholar 

  • Rajendran P, Gunasekaran P (2019) Microbial bioremediation. MJP Publisher, pp 34–35

    Google Scholar 

  • Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23(6):917–926

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. FAO, Rome

    Google Scholar 

  • Santoro M, Cappellari L, Giordano W, Banchio E (2015) Production of volatile organic compounds in PGPR. In: Handbook for Azospirillum. Springer, Cham, pp 307–317

    Chapter  Google Scholar 

  • Sauvêtre A, May R, Harpaintner R, Poschenrieder C, Schröder P (2018) Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis. J Hazard Mater 342:85–95

    Article  PubMed  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR (2013) Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 449–471

    Chapter  Google Scholar 

  • Shobha G, Kumudini BS (2012) Antagonistic effect of the newly isolated PGPR Bacillus spp. on Fusarium oxysporum. Int J Appl Sci Eng Res 1(3):463–474

    Article  Google Scholar 

  • Shukla OP, Rai UN, Dubey S (2009) Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresour Technol 100:2198–2203

    Article  CAS  PubMed  Google Scholar 

  • Sobariu DL, Fertu DI, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PF, Gavrilescu M (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134

    Article  CAS  Google Scholar 

  • Sura-de Jong M, Reynolds RJ, Richterova K, Musilova L, Staicu LC, Chocholata I, Cappa JJ, Taghavi S, van der Lelie D, Frantik T, Dolinova I (2015) Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties. Front Plant Sci 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV, Zylstra GJ, Tiedje JM (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75:5501–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terzaghi K, Peck RB (1996) Soil mechanics in engineering practice. Wiley, New York, pp 3–42

    Google Scholar 

  • Trifi H, Salem IB, Benzina NK, Fourati A, Costa MC, Achouak W, Sghaier H, Saidi M (2020) Effectiveness of the plant growth-promoting rhizobacterium Pantoea sp. BRM17 in enhancing Brassica napus growth in phosphor gypsum-amended soil. Pedosphere 30:570

    Article  Google Scholar 

  • United States Office of Solid Waste and EPA 542-F-12-003 Environmental Protection Emergency Response September 2012 Agency (5102G) www.epa.gov/superfund/sites, www.cluin.org

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vorobeichik EL, Ermakov AI, Zolotarev MP, Tuneva TK (2012) Changes in diversity of soil macrofauna in industrial pollution gradient. Russ Entomol J 21(2):203–218

    Article  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  • Wijekoon N, Yapa N (2018) Assessment of plant growth promoting rhizobacteria (PGPR) on potential biodegradation of glyphosate in contaminated soil and aquifers. Groundw Sustain Dev 7:465–469

    Article  Google Scholar 

  • Wiłkomirski B, Sudnik-Wójcikowska B, Galera H, Wierzbicka M, Malawska M (2011) Railway transportation as a serious source of organic and inorganic pollution. Water Air Soil Pollut 218(1-4):333–345

    Article  PubMed  CAS  Google Scholar 

  • Wimalawansa SA, Wimalawansa SJ (2014) Agrochemical-related environmental pollution: effects on human health. Global J Biol Agric Health Sci 3(3):72–83

    Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22(1):598–608

    Article  CAS  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2010) Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J Plant Nutr 33(12):1733–1743

    Article  CAS  Google Scholar 

  • Zaidi A, Oves M, Ahmad E, Khan MS (2011) Importance of free-living fungi in heavy metal remediation. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal contaminated soils, Environmental pollution 20. Springer, Dordrecht

    Google Scholar 

  • Zaidi A, Wani PA, Khan MS (2012) Bioremediation: a natural method for the management of polluted environment. In: Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 101–114

    Chapter  Google Scholar 

  • Zhang T, Mei-dong BU, Geng W (2012a) Pollution status and biogas-producing potential of livestock and poultry excrements in China. Chin J Ecol 31(5):1241–1249

    Google Scholar 

  • Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012b) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184(4):2261–2273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Manoj Kumar Chitara is grateful to ICAR for providing Senior Research Fellowship (SRF) and Sadhna Chauhan for University Fellowship of GBPUA&T, Pantnagar (Uttrakhand).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chitara, M.K., Chauhan, S., Singh, R.P. (2021). Bioremediation of Polluted Soil by Using Plant Growth–Promoting Rhizobacteria. In: Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-15-7447-4_8

Download citation

Publish with us

Policies and ethics