Skip to main content

Overview of Application of NIR Spectroscopy to Physical Chemistry

  • Chapter
  • First Online:
Near-Infrared Spectroscopy

Abstract

Near-infrared (NIR) spectroscopy is a powerful tool in studies of physicochemical properties of various kinds of samples. In particular, NIR spectroscopy contributed considerable to our understanding of intermolecular interactions (e.g. hydrogen bonding), molecular structure, solvent effect, clustering, phase transitions, kinetics. Because of mechanical and electrical anharmonicity of molecular vibrations, NIR spectra provide unique information not available from the other spectral regions. On the other hand, to elucidate useful information from NIR spectra, more sophisticated methods of data analysis than those applied in mid-infrared (mid–IR, MIR) region are necessary. This chapter presents selected examples demonstrating the variety of problems in the field of physical chemistry that have been studied by NIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Barone, M. Biczysko, J. Bloino, M. Borkowska-Panek, I. Carnimeo, P. Panek, Toward anharmonic computations of vibrational spectra for large molecular systems. Int. J. Quantum Chem. 112, 2185–2200 (2012)

    Article  CAS  Google Scholar 

  2. T. Gonjo, Y. Futami, Y. Morisawa, M.J. Wójcik, Y. Ozaki, Hydrogen bonding effects on the wavenumbers and absorption intensities of the OH fundamental and the first, second, and third overtones of phenol and 2,6-dihalogenated phenols studied by visible/near-infrared/infrared spectroscopy. J. Phys. Chem. A 115, 9845–9853 (2011)

    Article  CAS  Google Scholar 

  3. K.B. Beć, J. Grabska, C.W. Huck, Y. Ozaki, Quantum mechanical simulation of near-infrared spectra. Applications in physical and snalytical chemistry. in Molecular Spectroscopy: A Quantum Chemistry Approach. ed by Y. Ozaki, M.J. Wójcik, J. Popp, (Weinheim, Grermany, Wiley-VCH, 2019) pp. 353–388

    Google Scholar 

  4. K.B. Beć, C.W. Huck, Breakthrough potential in near-infrared spectroscopy: spectra simulation. A review of recent developments. Front. Chem. 7, 48 (2019)

    Article  Google Scholar 

  5. M.A. Czarnecki, Y. Morisawa, Y. Futami, Y. Ozaki, Advances in molecular structure and interaction studies using near-infrared spectroscopy. Chem. Rev. 115, 9707–9744 (2015)

    Article  CAS  Google Scholar 

  6. L. Bokobza, Origin of near-infrared absorption bands. in Near-Infrared Spectroscopy: Principles, Instruments, Applications, ed. by H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, (Wiley-VCH Verlag GmbH, 2002), pp. 11–42

    Google Scholar 

  7. B.R. Henry, Use of local modes in the description of highly vibrationally excited molecules. Acc. Chem. Res. 20, 429–435 (1987)

    Article  CAS  Google Scholar 

  8. H.G. Kjaergaard, H. Yu, B.J. Schattka, B.R. Henry, A.W. Tarr, Intensities in local mode overtone spectra: Propane. J. Chem. Phys. 93, 6239–6248 (1990)

    Article  CAS  Google Scholar 

  9. Y. Chen, Y. Morisawa, Y. Futami, M.A. Czarnecki, H.S. Wang, Y. Ozaki, Combined IR/NIR and density functional theory calculations analysis of the solvent effects on frequencies and intensities of the fundamental and overtones of the C=O stretching vibrations of acetone and 2-hexanone. J. Phys. Chem. A 118, 2576–2583 (2014)

    Article  CAS  Google Scholar 

  10. K.B. Beć, D. Karczmit, M. Kwaśniewicz, Y. Ozaki, M.A. Czarnecki, Overtones of νC≡N vibration as a probe of structure of liquid CH3CN, CD3CN, and CCl3CN: combined infrared, near-infrared, and Raman spectroscopic studies with anharmonic density functional theory calculations. J. Phys. Chem. A 123, 4431–4442 (2019)

    Article  Google Scholar 

  11. C. Bourderon, C. Sandorfy, Association and the assignment of the OH overtones in hydrogen bonded alcohols. J. Chem. Phys. 59, 2527–2536 (1973)

    Article  CAS  Google Scholar 

  12. C. Sandorfy, Hydrogen bonding: How much anharmonicity? J. Mol. Struct. 790, 50–54 (2006)

    Article  CAS  Google Scholar 

  13. Y. Hu, J. Zhang, H. Sato, Y. Futami, I. Noda, Y. Ozaki, C-HOC hydrogen bonding and isothermal crystallization kinetics of poly(3-hydroxybutyrate) investigated by near-infrared spectroscopy. Macromolecules 39, 3841–3847 (2006)

    Article  CAS  Google Scholar 

  14. Sandorfy, C. Chapter 13 In The hydrogen bond. Recent developments in theory and experiments. (Schuster, P., Zundel, G., Sandorfy, C., Eds.), Amsterdam, North-Holland Publ. Co, 1976, pp 615–654

    Google Scholar 

  15. J. Joseph, E.D. Jemmis, Red-, blue-, or no-shift in hydrogen bonds: A unified explanation. J. Am. Chem. Soc. 129, 4620–4632 (2007)

    Article  CAS  Google Scholar 

  16. M.D. Struble, C. Kelly, M.A. Siegler, T. Lectka, Search for a strong, virtually “No-Shift” hydrogen bond: A cagemolecule with an exceptional OH…F interaction. Angew. Chem. Int. Ed. 53, 8924–8928 (2014)

    Article  CAS  Google Scholar 

  17. W.A.P. Luck, W. Ditter, Die assoziation der alkohole bis in überkritische bereiche. Ber. Bunsen-Ges. Phys. Chem. 72, 365–374 (1968)

    Article  CAS  Google Scholar 

  18. M. Iwahashi, M. Suzuki, N. Katayama, H. Matsuzawa, M.A. Czarnecki, Y. Ozaki, A. Wakisaka, Molecular self-assembling of butan-1-ol, butan-2-ol, and 2-methylpropan-2-ol in carbon tetrachloride solutions as observed by near-infrared spectroscopic measurements. Appl. Spectrosc. 54, 268–276 (2000)

    Article  CAS  Google Scholar 

  19. L. Stordrange, A.A. Christy, O.M. Kvalheim, H. Shen, Y. Liang, Study of the self-association of alcohols by near-infrared spectroscopy and multivariate 2D techniques. J. Phys. Chem. A 106, 8543–8553 (2002)

    Article  Google Scholar 

  20. Segtnan, V.H., Šašić, S., Isaksson, T., Ozaki, Y. Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis. Anal. Chem. 2001, 73, 3153 − 3161

    Google Scholar 

  21. Šašić, S., Segtnan, V. H., Ozaki, Y. Self-modeling curve resolution study of temperature-dependent near-infrared spectra of water and the investigation of water structure. J. Phys. Chem. A 2002, 106, 760 − 766

    Google Scholar 

  22. B. Czarnik-Matusewicz, S. Pilorz, J.P. Hawranek, Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Anal. Chim. Acta 544, 15–25 (2005)

    Article  CAS  Google Scholar 

  23. R. Iwamoto, H. Kusanagi, Determination of the hydrate structure of an isolated alcoholic OH in hydrophobic medium by infrared and near-infrared spectroscopy. J. Phys. Chem. A 113, 5310–5316 (2009)

    Article  CAS  Google Scholar 

  24. M.A. Czarnecki, Y. Liu, Y. Ozaki, M. Suzuki, M. Iwahashi, Potential of Fourier transform near-infrared spectroscopy in studies of the dissociation of fatty acids in the liquid phase. Appl. Spectrosc. 47, 2162–2168 (1993)

    Article  CAS  Google Scholar 

  25. M.A. Czarnecki, M. Czarnecka, Y. Liu, Y. Ozaki, M. Suzuki, M. Iwahashi, FT-NIR study of dissociation of decen-1-ol in the liquid phase – I. Spectrochim. Acta A 51, 1005–1015 (1995)

    Article  Google Scholar 

  26. Czarnecki, M.A., Maeda, H., Ozaki, Y., Suzuki, M., Iwahashi, M. Resolution enhancement and band assignments for the first overtone of OH stretching modes of butanols by two dimensional near-infrared correlation spectroscopy. 2. Thermal dynamics of hydrogen bonding in n- and tert-butyl alcohol in the pure liquid states. J. Phys. Chem. A 1998, 102, 9117 − 9123

    Google Scholar 

  27. M.A. Czarnecki, Y. Ozaki, The temperature-induced changes in hydrogen bonding of decan-1-ol in the pure liquid phase studied by two-dimensional Fourier transform near-infrared correlation spectroscopy. Phys. Chem. Chem. Phys. 1, 797–800 (1999)

    Article  CAS  Google Scholar 

  28. M.A. Czarnecki, Near-infrared spectroscopic study of hydrogen bonding in chiral and racemic octan-2-ol. J. Phys. Chem. A 107, 1941–1944 (2003)

    Article  CAS  Google Scholar 

  29. M.A. Czarnecki, K. Orzechowski, Effect of temperature and concentration on self-association of octan-3-ol studied by vibrational spectroscopy and dielectric measurements. J. Phys. Chem. A 107, 1119–1126 (2003)

    Article  CAS  Google Scholar 

  30. K. Orzechowski, M.A. Czarnecki, Association of 1-hexanol in mixtures with n-hexane: dielectric, near-infrared and DFT studies. J. Mol. Liq. 279, 540–547 (2019)

    Article  CAS  Google Scholar 

  31. Y. Morisawa, A. Suga, Effects of intermolecular interactions on absorption intensities of the fundamental, and the first, second and the third overtones of OH stretching vibrations of methanol and t-butanol d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy. Spectrochim. Acta A 197, 121–125 (2018)

    Article  CAS  Google Scholar 

  32. Q. Dong, C. Yu, L. Li, L. Nie, D. Li, H. Zang, Near-infrared study of molecular interaction in ethanol-water mixtures. Spectrochim. Acta A 222, 1–8 (2019)

    Article  Google Scholar 

  33. Y. Futami, Y. Ozaki, Y. Hamada, M.J. Wójcik, Y. Ozaki, Solvent dependence of absorption intensities and wavenumbers of the fundamental and first overtone of NH stretching vibration of pyrrole studied by near-infrared/infrared spectroscopy and DFT calculations. J. Phys. Chem. A 115, 1194–1198 (2011)

    Article  CAS  Google Scholar 

  34. Y. Futami, Y. Morisawa, Y. Ozaki, Y. Hamada, M.J. Wójcik, Y. Ozaki, The dielectric constant dependence of absorption intensities and wavenumbers of the fundamental and overtone transitions of stretching vibration of the hydrogen fluoride studied by quantum chemistry calculations. J. Mol. Struct. 1018, 102–106 (2012)

    Article  CAS  Google Scholar 

  35. O. Golonzka, A. Tokmakoff, Polarization-selective third-order spectroscopy of coupled vibronic states. J. Chem. Phys. 115, 297–309 (2001)

    Article  CAS  Google Scholar 

  36. Beć, K.B., Grabska, J., Kirchler, C.G., Huck, C.W. NIR spectra simulation of thymol for better understanding of the spectra forming factors, phase and concentration effects and PLS regression features. J. Mol. Liq. 2018, 268, 895–902

    Google Scholar 

  37. M.J. Schuler, T.S. Hofer, C.W. Huck, Assessing the predictability of anharmonic vibrational modes at the example of hydroxyl groups – ad hoc construction of localised modes and the influence of structural solute–solvent motifs. Phys. Chem. Chem. Phys. 19, 11990–12001 (2017)

    Article  CAS  Google Scholar 

  38. K.B. Beć, M.J. Wójcik, T. Nakajima, Quantum chemical calculations of basic molecules: alcohols and carboxylic acids. NIR News 27(8), 15–21 (2016)

    Article  Google Scholar 

  39. K.B. Beć, Y. Futami, M.J. Wójcik, Y. Ozaki, A spectroscopic and theoretical study in the near-infrared region of low concentration aliphatic alcohols. Phys. Chem. Chem. Phys. 18, 13666–13682 (2016)

    Article  Google Scholar 

  40. O.M.D. Lutz, C.B. Messner, T.S. Hofer, L.R. Canaval, G.K. Bonn, C.W. Huck, Computational vibrational spectroscopy of glycine in aqueous solution—Fundamental considerations towards feasible methodologies. Chem. Phys. 435, 21–28 (2014)

    Article  CAS  Google Scholar 

  41. Y. Toyama, K. Murakami, N. Yoshimura, M. Takayanagi, Even-odd alternation of near-infrared spectra of alkane-αω-diols in their solid states. Spectrochim. Acta A 197, 148–152 (2018)

    Article  CAS  Google Scholar 

  42. L. Liu, Y. Cheng, X. Sun, F. Pi, Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis. Spectrochim. Acta A 197, 153–158 (2018)

    Article  CAS  Google Scholar 

  43. Grabska, J., Ishigaki, M., Beć, K.B., Wójcik, M.J., Ozaki, Y. Structure and near-infrared spectra of saturated and unsaturated carboxylic acids. An insight from anharmonic DFT calculations. J. Phys. Chem. A 2017, 121, 3437–3451

    Google Scholar 

  44. Grabska, J., Czarnecki, M.A., Beć, K.B., Ozaki, Y. Spectroscopic and quantum mechanical calculation study of the efect of isotopic substitution on NIR spectra of methanol. J. Phys. Chem. A 2017, 121, 7925–7936

    Google Scholar 

  45. Beć, K.B., Grabska, J., Huck, C.W., Czarnecki, M.A. Spectra–structure correlations in isotopomers of ethanol (CX3CX2OX; X = H, D): combined near-infrared and anharmonic computational study. Molecules 2019, 24, 2189

    Google Scholar 

  46. Grabska, J., Beć, K.B., Ozaki, Y., Huck, C.W. Temperature drift of conformational equilibria of butyl alcohols studied by near-infrared spectroscopy and fully anharmonic DFT. J. Phys. Chem. A 2017, 121, 1950–1961

    Google Scholar 

  47. L.G. Weyer, S.C. Lo, Spectra-structure correlations in the near-infrared, ed by J.M. Chalmers, P.R. Griffiths, Handbook of vibrational spectroscopy, vol. 3 (Chichester, Wiley, 2002)

    Google Scholar 

  48. M.A. Czarnecki, D. Wojtków, K. Haufa, Rotational isomerism of butanols: infrared, near-infrared and DFT study. Chem. Phys. Lett. 431, 294–299 (2006)

    Article  CAS  Google Scholar 

  49. Kirchler, C.G., Pezzei, C.K., Beć, K.B., Mayr, S., Ishigaki, M., Ozaki, Y., Huck, C.W. Critical evaluation of spectral information of benchtop vs. portable near-infrared spectrometers: quantum chemistry and two-dimensional correlation spectroscopy for a better understanding of PLS regression models of the rosmarinic acid content in Rosmarini folium. Analyst 2017, 142, 455–464

    Google Scholar 

  50. Chalmers, J.M., Griffiths, P.R., (Eds.) Handbook of vibrational spectroscopy. Vol. 1, John Wiley & Sons Ltd, 2002

    Google Scholar 

  51. Grabska, J., Beć, K.B., Ishigaki, M., Huck, C.W., Ozaki, Y. NIR spectra simulations by anharmonic DFT-saturated and unsaturated long-chain fatty acids. J. Phys. Chem. B 2018, 122, 6931–6944

    Google Scholar 

  52. O.M.D. Lutz, B.M. Rode, G.K. Bonn, C.W. Huck, The impact of highly correlated potential energy surfaces on the anharmonically corrected IR spectrum of acetonitrile. Spectrochimica Acta A 131, 545–555 (2014)

    Article  CAS  Google Scholar 

  53. Grabska, J., Beć, K.B., Kirchler, C.G., Ozaki, Y., Huck, C.W. Distinct difference in sensitivity of NIR vs. IR bands of melamine to inter-molecular interactions with impact on analytical spectroscopy explained by anharmonic quantum mechanical study. Molecules 2019, 24, 1402

    Google Scholar 

  54. Beć, K.B., Grabska, J., Ozaki, Y., Hawranek, J.P., Huck, C.W. Influence of non-fundamental modes on mid-infrared spectra. Anharmonic DFT study of aliphatic ethers. J. Phys. Chem. A 2017, 121, 1412–1424

    Google Scholar 

  55. A. Ikehata, C. Hashimoto, Y. Mikami, Y. Ozaki, Thermal phase behavior of triethylamine–water mixtures studied by near-infrared spectroscopy: band shift of the first overtone of the C-H stretching modes and the phase diagram. Chem. Phys. Lett. 393, 403–408 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof B. Beć .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czarnecki, M.A., Beć, K.B., Grabska, J., Hofer, T.S., Ozaki, Y. (2021). Overview of Application of NIR Spectroscopy to Physical Chemistry. In: Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B. (eds) Near-Infrared Spectroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8648-4_13

Download citation

Publish with us

Policies and ethics