Skip to main content

Bipolar Fuzzy Planar Graphs

  • Chapter
  • First Online:
Graphs for the Analysis of Bipolar Fuzzy Information

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 401))

  • 287 Accesses

Abstract

In this chapter, we study the concepts of bipolar fuzzy multisets, bipolar fuzzy multigraphs, strong and complete bipolar fuzzy multigraphs, bipolar fuzzy planar graphs, and bipolar fuzzy dual graphs. We discuss different types of bipolar fuzzy edges, intersection value and planarity value of bipolar fuzzy graphs, strong and weak bipolar fuzzy faces, and the relation of planarity and duality in bipolar fuzzy graphs. We elaborate various properties of bipolar fuzzy bridges, bipolar fuzzy cut vertices, bipolar fuzzy blocks, bipolar fuzzy cycles, and bipolar fuzzy trees in terms of level graphs. We describe the importance of bipolar fuzzy planar graphs with a number of real-world applications in road networks and electrical connections. The main results of this chapter are from [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul-jabbar, N., Naoom, J.H., Ouda, E.H.: Fuzzy dual graph. J. Al. Nahrain Univ. 12(4), 168–171 (2009)

    Google Scholar 

  2. Akram, M.: Bipolar fuzzy graphs. Inf. Sci. 181(24), 5548–5564 (2011)

    Article  MathSciNet  Google Scholar 

  3. Akram, M.: Bipolar fuzzy graphs with applications. Knowl.-Based Syst. 39, 1–8 (2013)

    Google Scholar 

  4. Akram, M., Dudek, W.A.: Regular bipolar fuzzy graphs. Neural Comput. Appl. 21(supp 1), 197–205 (2012)

    Google Scholar 

  5. Akram, M., Alshehri, N., Davvaz, B., Ashraf, A.: Bipolar fuzzy digraphs in decision support systems. J. Multiple-Valued Logic Soft. Comput. 27(5–6), 531–551 (2016)

    MATH  Google Scholar 

  6. Akram, M., Farooq, A.: Bipolar fuzzy trees. New Trends Math. Sci. 4(3), 58–72 (2016)

    Article  MathSciNet  Google Scholar 

  7. Akram, M., Samanta, S., Pal, M.: Application of bipolar fuzzy sets in planar graphs. Int. J. Appl. Comput. Math. 3(2), 773–785 (2017)

    Article  MathSciNet  Google Scholar 

  8. Mathew, S., Sunitha, M.S.: Types of arcs in a fuzzy graph. Inf. Sci. 179(11), 1760–1768 (2009)

    Article  MathSciNet  Google Scholar 

  9. Mathew, S., Sunitha, M.S.: Strongest strong cycles and \(\theta \)-fuzzy graphs. IEEE Trans. Fuzzy Syst. 21(6), 1096–1104 (2013)

    Article  Google Scholar 

  10. Mordeson, J.N., Nair, P.S.: Cycles and cocycles of fuzzy graphs. Inf. Sci. 90(1–4), 39–49 (1996)

    Article  MathSciNet  Google Scholar 

  11. Nagoorgani, A., Radha, K.: Degree of fuzzy graph. Int. J. Algorithms Comput. Math. 2(3), 1–9 (2009)

    Google Scholar 

  12. Pal, A., Samanta, S., Pal, M.: Concept of fuzzy planar graphs. In: Proceedings of Science and Information Conference, pp. 557–563. IEEE (2013)

    Google Scholar 

  13. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Shimura, M. (eds.) Fuzzy Sets and Their Applications, pp. 77–95. Academic, New York (1975)

    Google Scholar 

  14. Samanta, S., Pal, M.: Fuzzy planar graphs. IEEE Trans. Fuzzy Syst. 23(6), 1936–1942 (2015)

    Article  Google Scholar 

  15. Samanta, S., Pal, M., Pal, A.: New concepts of fuzzy planar graph. Int. J. Adv. Res. Artif. Intell. 3(1), 52–59 (2014)

    Google Scholar 

  16. Shinoj, T.K., John, S.J.: Intuitionistic fuzzy multisets and its application in medical diagnosis. World Acad. Sci. Eng. Technol. 6(1), 1418–1421 (2012)

    Google Scholar 

  17. Sunitha, M.S., Vijayakumar, A.: A characterization of fuzzy trees. Inf. Sci. 113, 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  18. Sunitha, M.S., Vijayakumar, A.: Complement of a fuzzy graph. Indian J. Pure Appl. Math. 33(9), 1451–1464 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Wilson, R.J.: Graph theory. History of Topology. Elsevier Science, Amsterdam (1999)

    Google Scholar 

  20. Zhang, W.-R.: Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis. In: Proceedings of IEEE Conference, pp. 305–309 (1994)

    Google Scholar 

  21. Zhang, W.-R., Zhang, L.: YinYang bipolar logic and bipolar fuzzy logic. Inf. Sci. 165(3–4), 265–287 (2004)

    Article  Google Scholar 

  22. Zhang, W.-R.: (YinYang) Bipolar fuzzy sets. In: IEEE International Conference on Fuzzy Systems, pp. 835–840 (1998)

    Google Scholar 

  23. Zhang, W.-R.: The road from fuzzy sets to definable causality and bipolar quantum intelligence-To the memory of Lotfi A. Zadeh. J. Intell. Fuzzy Syst. 36(4), 3019–3032 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram .

Exercises 5

Exercises 5

  1. 1.

    Let G and H be connected bipolar fuzzy fuzzy graphs different from \(K_1\) and \(K_2\), then prove or disprove that \(G\Box H\) is a bipolar fuzzy planar graph if and only if both factors are bipolar fuzzy paths, or one is a bipolar fuzzy path and other is a bipolar fuzzy cycle.

  2. 2.

    If \(G = (A, B)\) is a bipolar fuzzy graph with p vertices, then show that G has at most \(p - 1\) bipolar fuzzy bridges.

  3. 3.

    Prove that a nontrivial bipolar fuzzy tree H has at least two bipolar fuzzy end nodes.

  4. 4.

    If H is a bipolar fuzzy tree, then show that every vertex of H is either a bipolar fuzzy cut-node or a bipolar fuzzy end node. Also, show that the converse is not true.

  5. 5.

    If G is a bipolar fuzzy tree, then prove or disprove that the arcs of G are bipolar fuzzy bridges.

  6. 6.

    Show that a bipolar fuzzy cut vertex of a bipolar fuzzy tree is the common vertex of at least two bipolar fuzzy bridges.

  7. 7.

    If G is a bipolar fuzzy tree, then show that every vertex of G is either a bipolar fuzzy cut vertex or a bipolar fuzzy end node.

  8. 8.

    If G is a bipolar fuzzy tree, then show that it has at most \(n - 1\) number of bipolar fuzzy bridges where n is the number of vertices in G.

  9. 9.

    Show that every bipolar fuzzy bridge is strong, but a strong edge need not be a bipolar fuzzy bridge.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, M., Sarwar, M., Dudek, W.A. (2021). Bipolar Fuzzy Planar Graphs. In: Graphs for the Analysis of Bipolar Fuzzy Information. Studies in Fuzziness and Soft Computing, vol 401. Springer, Singapore. https://doi.org/10.1007/978-981-15-8756-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8756-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8755-9

  • Online ISBN: 978-981-15-8756-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics