Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 249 Accesses

Abstract

The year 2013 saw a rapid boom in the area of the thermoplastic Elastomers recording a market share of more than 19.6 million metric tons and has predicted that the figure should be going beyond 29 million metric tons by 2020 [1]. There are two most bolstered reasons as to why the polymer industry is continuously expanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, K., Zhang, Y., Meng, J., Green, E.C., Tajaddod, N., Li, H.: Structural polymer-based carbon nanotube composite fibers: understanding the processing_structure-performance relationship. Materials 6(6), 2543–2577 (2013)

    Article  CAS  Google Scholar 

  2. Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay, R., Auddy, K., Deuri, A.: A short review on rubber/clay nanocomposites with emphasis on mechanical properties. PolymEng Sci. 47, 1956–1974 (2007)

    Google Scholar 

  3. Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H., Zhao, S.H.: Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym. Adv. Technol. 19, 1543–1549 (2008)

    CAS  Google Scholar 

  4. Bhowmick, A.K., Stephens, H.: Handbook of Elastomers. CRC Press, New York, NY (2000)

    Book  Google Scholar 

  5. Chandra, R., Singh, S., Gupta, K.: Damping studies in fiber-reinforced composites-a review. Compos. Struct. 46(1), 41–51 (1999)

    Article  Google Scholar 

  6. Thomas, S., Stephen, R.: Rubber Nanocomposites: Preparation, Properties and Applications. Wiley (2010)

    Google Scholar 

  7. Kato, A., Ikeda, Y., Kohjiya, S.: Carbon black-filled natural rubber composites: physical chemistry and reinforcing mechanism. Polym. Compos. 1, 515–543 (2012)

    Article  CAS  Google Scholar 

  8. Liu, X., Wang, L., Zhao, L., He, H., Shao, X., Fang, G., Wan, Z., Zeng, R.: Polym. Compos. 39(4), 1006–1022 (2018)

    Article  CAS  Google Scholar 

  9. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  10. Barker, A., Du, X., Skachko, I., Andrei, E.Y.: Nat. Nanotechnol. 3(8), 491–495 (2008)

    Article  CAS  Google Scholar 

  11. King, A., Johnson, G., Engelberg, D., Ludwig, W.: Marrow J. Science 321(5887), 382–385 (2008)

    Article  CAS  Google Scholar 

  12. Medalia, A.: Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 51(3), 437–523 (1978)

    Article  CAS  Google Scholar 

  13. Callister, W.D., Rethwisch, D.G.: Materials Science and Engineering: An Introduction, vol. 7. Wiley, New York, NY (2007)

    Google Scholar 

  14. Adewole, J.K., Al-Mubaiyedh, U.A., Ul-Hamid, A., Al-Juhani, A.A., Hussein, I.A.: Bulk and surface mechanical properties of clay modified HDPE used in liner applications. Can. J. Chem. Eng. 90, 1066–1078 (2012)

    Article  CAS  Google Scholar 

  15. Trckova, M., Matlova, L., Dvorska, L.: Kaolin, bentonite, and zeolites as feed supplements for animals: health advantages and risks. A review. Vet Med-UZPI (Czech Republic) 49, 389–399 (2004)

    Article  CAS  Google Scholar 

  16. Lau, K-T., Gu, C., Hui, D.: A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos. Part B Eng. 37(6), 425–36 (2006)

    Google Scholar 

  17. Li, G., Wang, L., Lichang, W., Ni, H., Pittman, C.: Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J. Inorg. Organomet. Polym. 11, 123–154 (2001)

    Google Scholar 

  18. K. Muralidharan, J.H. Simmons, P.A Deymier, Molecular dynamics studies of brittle fracture in vitreous silica: review and recent progress. J. Non-Crystalline Solids, 351, 1532–1542 (2005)

    Google Scholar 

  19. Bailey, E., Holloway, J.R.: Experimental determination of elastic properties of talc to 800 C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth Planet Sci. Lett. 183(3), 487–498 (2000)

    Google Scholar 

  20. Tomoko, K., Masayoshi, H., Akihiko, H., Toru, S., Koichi Niihara, N.: Langmuir 14(12), 3160–3163 (1998)

    Google Scholar 

  21. Bhattacharya, M., Maiti, M., Bhowmick, A.K.: Influence of different nanofillers and their dispersion methods on the properties of natural rubber nanocomposites. Rubber Chem. Technol. 81, 782–808 (2008)

    Article  CAS  Google Scholar 

  22. Maiti, M., Bhattacharya, M. Bhowmick, A.K.: Elastomer nanocomposites. Rubber Chem. Technol. 81, 384–469 (2008)

    Google Scholar 

  23. Tjong, S.C.: Structural and mechanical properties of polymer nanocomposites. Mat. Sci. Eng. R 53(3–4), 73–197 (2006)

    Article  CAS  Google Scholar 

  24. Jancar, J., Douglas, J.F., Starr, F.W., Kumar, S.K., Cassagnau, P., Lesser, A.J.: Current issues in research on structure/property relationships in polymer nanocomposites. Polymer 51(15), 3321–43 (2010)

    Google Scholar 

  25. Montes, H., Chausseé, T., Papon, A., Lequeux, F., Guy, L.: Particles in model filled rubber: dispersion and mechanical properties. Eur. Phys. J. E. 31(3):263–268 (2010)

    Google Scholar 

  26. Kroshefsky, R.D., Price, J.L., Mangaraj, D.: Role of compatibilization in polymer nanocomposites. Rubber Chem. Technol. 82, 340–368 (2009)

    Article  CAS  Google Scholar 

  27. Chabert, E., Bornert, M., Bourgeat-Lami, E., Cavaille, J.Y., Dendievel, R., Gauthier, C.: Filler-filler interactions and viscoelastic behavior of polymer nanocomposites. Mat. Sci. Eng. A 381, 320–330 (2004)

    Article  CAS  Google Scholar 

  28. Iwamoto, S., Kai, W., Isogai, A., Iwata, T.: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9), 2571–2576 (2009)

    Article  CAS  Google Scholar 

  29. Miyake, H., Gotoh, Y., Ohkoshi, Y., Nagura, M.: Tensile properties of wet cellulose. Polym. J. 32, 29–32 (2000)

    Google Scholar 

  30. Bongarde, U., Shinde, V.: Review on natural fiber reinforcement polymer composites. Int. J. Eng. Sci. Innov. Technol. 3(2), 431–436 (2014)

    Google Scholar 

  31. Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N.: Review processing, properties and applications of reactive silica from rice husk—an overview. J. Mater. Sci. 38, 3159–3168 (2003)

    Article  CAS  Google Scholar 

  32. Donnet, J.B., Voet, A.: Carbon Black: Physics, Chemistry, and Elastomer Reinforcement. M. Dekker, New York, NY (1976)

    Google Scholar 

  33. Studebaker, M.L.: The chemistry of carbon black and reinforcement. Rubber Chem. Technol. 30(5), 1400–1483 (1957)

    Article  CAS  Google Scholar 

  34. Minus, M., Kumar, S.: The processing, properties, and structure of carbon fibers. JOM 57(2), 52–58 (2005)

    Article  CAS  Google Scholar 

  35. Zhang, Y., Tajaddod, N., Song, K., Minus, M.L.: Low temperature graphitization of interphase polyacrylonitrile (PAN). Carbon 91, 479–493 (2015)

    Article  CAS  Google Scholar 

  36. Zhang, Y., Song, K., Meng, J., Minus, M.L.: Tailoring polyacrylonitrile interfacial morphological structure by crystallization in the presence of single-wall carbon nanotubes. ACS Appl. Mater. Interfaces 5(3), 807–814 (2013)

    Google Scholar 

  37. Tang, M., Xing, W., Wu, J., Huang, G., Xiang, K., Guo, L., Li, G.: J. Mater. Chem. 3(11), 5942–5948 (2015)

    Article  CAS  Google Scholar 

  38. Li, H., Wu, S., Wu, J., Huang, G.: Colloid Polym. Sci. 291(10), 2279–2287 (2013)

    Google Scholar 

  39. De Falco, A., Marzocca, A.J., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G.H., Goyanes, S.: J. Appl. Polym. Sci., 113(5), 2851–2857 (2009)

    Google Scholar 

  40. Shanmugharaj, A., Bae, J., Lee, K., Noh, W., Lee, S., Ryu, S.: Compos. Sci. Technol. 67(9), 1813–1822 (2007)

    Article  CAS  Google Scholar 

  41. Xing, W., Tang, M., Wu, J., Huang, G., Li, H., Lei, Z., Fu, X., Li, H.: Compos. Sci. Technol. 99, 67–74 (2014)

    Article  CAS  Google Scholar 

  42. Xing, W., Wu, J., Huang, G., Li, H., Tang, M., Fu, X.: Polym. Int. 63(9), 1674–1681 (2014)

    Article  CAS  Google Scholar 

  43. Wu, J., Zeng, L., Huang, X., Zhao, L., Huang, G.: J. Mater. Chem. 5(29), 15048–15055 (2017)

    Article  CAS  Google Scholar 

  44. Ay, A.N., Zumreoglu-Karan, B., Temel, A., Rives, V.: Bioinorganic magnetic coreshell-nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorg. Chem. 48, 8871–8877 (2009)

    Google Scholar 

  45. Bagherifam, S., Komarneni, A., Lakzian, A., Fotovat, R., Khorasani, R., Huang, W., Ma, J., Wang, Y.: Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: isotherms and kinetics. Appl. Clay Sci. 95, 119–125 (2014)

    Google Scholar 

  46. Barahuie, F., Hussein, M.Z., Gani, S.A., Fakurazi, S., Zainal, Z.: Synthesis of protocatechuic acid–zinc/aluminium–layered double hydroxide nanocomposite as ananticancernanodelivery system. J. Solid State Chem. 221, 21–31 (2015)

    Article  CAS  Google Scholar 

  47. Barhoumi, H., Maaref, A., Rammah, M., Martelet, C., Jaffrezic, N., Mousty, C., Vial, S., Forano, C.: Urea biosensor based on Zn3Al-urease layered double hydroxides nanohybrid coated on insulated silicon structures. Mater. Sci. Eng., C 26, 328–333 (2006)

    Article  CAS  Google Scholar 

  48. Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., Rosenzweig, A.: Dana’s New Mineralogy, 8th edn. Wiley, New York (1997)

    Google Scholar 

  49. Birgul, Z.K., Ahmet, A.: Layered double hydroxides – multifunctional nanomaterials. Chem. Pap. 66, 1–10 (2012). Bugatti, V., Gorrasi, G., Montanari, F., Nocchetti, M., Tammaro, L., Vittoria, V.: Modified layered double hydroxides in polycaprolactone as a tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Appl. Clay Sci. 52, 34–40 (2011)

    Google Scholar 

  50. Shi, H.M., He, J.: Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. J. Catal. 279, 155–162 (2011)

    Article  CAS  Google Scholar 

  51. Roy, S.S., Pouliot, S., Bousmina, M., Utracki, A.: Polymer 45, 8403 (2004)

    Article  CAS  Google Scholar 

  52. Costa, F.R., Satapathy, B.K., Wagenknechi, U., Weidisch, R., Heinrich, G.: Eur. Polym. J42, 2140 (2006)

    Article  CAS  Google Scholar 

  53. Pradhan, S., Costa, F.R., Wagenknecht, U., Jehinichen, D., Bhowmick, A.K., Heinrich, G.: Eur. Polym. J. 44, 3122 (2008)

    Google Scholar 

  54. Lee, W.D., Im, S.S.: J. Polym. Sci. B: Polym. Phys. 45, 28 (2007)

    Google Scholar 

  55. Wu, G., Wang, L., Evans, D.G., Duan, X.: Eur. J. Inorg. Chem. 2006, 3185 (2006)

    Article  CAS  Google Scholar 

  56. Acharya, H., Srivastava, S.K., Bhowmick, A.K.: Compos. Sci. Technol. 67, 2807 (2007)

    Article  CAS  Google Scholar 

  57. Oertel, G. (ed.): Polyurethane Handbook. Hanser Publishers, Munich (1989)

    Google Scholar 

  58. Tseng, W.Y., Lin, J.T., Mou, C.Y., Cheng, S., Liu, S.B., Chu, P.P., et al.: J. Am. Chem. Soc. 118, 4411 (1996)

    Google Scholar 

  59. Mishra, G., Dash, B., Pandey, S.: Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci. 153, 172–186 (2018)

    Article  CAS  Google Scholar 

  60. Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., Kim, J.W., Choy, J.H., Oh, J.M., Park, M., Sohn, K.M., Kim, J.W.: Inorganic-bio-molecular hybrid nanomaterials as a genetic molecular code system. Adv. Mater. 16, 1181–1184 (2004)

    Article  CAS  Google Scholar 

  61. Evans, D.G., Slade, R.C.T.: Layered double hydroxides. Structure and Bonding, vol. 119, pp. 1–87. Springer, Berlin, Germany (2006)

    Google Scholar 

  62. Mishra, G., Dash, B., Pandey, S., Sethi, D., Kumar, C.G.: Comparative evaluation of synthetic routes and antibacterial/antifungal activities of Zn-Al layered double hydroxides containing benzoate anion, 35(3), 247–260 (2017b)

    Google Scholar 

  63. Moaty, S.A.A., Farghali, A.A., Khaled, R.: Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA. Mater. Sci. Eng., C 68, 184–193 (2016)

    Article  CAS  Google Scholar 

  64. Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gueho, C., Besse, J.P., Morel, J.P.: Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide: microcalorimetric determination of the enthalpies of anion exchange. J. Mater. Chem. 13, 2582–2585 (2003)

    Article  CAS  Google Scholar 

  65. Moujahid, E.M., Inacio, J., Besse, J.P., Leroux, F.: Adsorption of styrene sulfonate versus polystyrene sulfonate on layered double hydroxides. Microporous Mesoporous Mater. 57, 37–46 (2003)

    Article  CAS  Google Scholar 

  66. Zong, X., Wang, L.: Ion-exchangeable semiconductor materials for visible lightinduced photocatalysis. J Photochem. Photobiol. C: Photochem. Rev. 18, 32–49 (2014)

    Article  CAS  Google Scholar 

  67. Kuila, T., Srivastava, S.K., Bhowmick, A.K., Saxena, A.K.: Thermoplastic polyolefin based polymer—blend-layered double hydroxide Nanocomposites. Compos. Sci. Technol. 68, 3234–3239 (2008)

    Google Scholar 

  68. Lagaly, G., Beneke, K.: Colloid Polym. Sci. 269, 1198 (1991)

    Article  CAS  Google Scholar 

  69. Dekany, I., Berger, F., Imrik, K., Lagaly, G.: Colloid Polym. Sci. 275, 681 (1997)

    Google Scholar 

  70. Pavan, P.C., Crepaldi, E.L., Gomez, G., Valim, J.: Colloids Surf. A 154, 399 (1999)

    Google Scholar 

  71. Esumi, K., Yamamoto, S.: Colloids Surf. A137, 385 (1998)

    Article  Google Scholar 

  72. You, Y.W., Zhao, H.T., Vance, G.F.: Colloids Surf. A205, 161 (2002)

    Article  Google Scholar 

  73. You, Y.W., Zhao, H.T., Vance, G.F.: J. Mater. Chem. 12, 907 (2002)

    Article  CAS  Google Scholar 

  74. Celis, R., Koskinen, W.C., Cecchi, A.M., Bresnahan, G.A., Carrisoza, M.J., Ulibarri, M.A., Pavlovic, I., Hermosin, M.C.: J. Environ. Sci. Health B 34, 929 (1999)

    Article  Google Scholar 

  75. Celis, R., Koskinen, W.C., Hermosin, M.C., Ulibarri, M.A., Cornejo, J.: Soil Sci. Soc. Am. J. 64, 36 (2000)

    Article  CAS  Google Scholar 

  76. Villa, M.V., Sanchez-Martin, M.J., Sanchez-Camazano, M.: J. Environ. Sci. Health B 34, 509 (1999)

    Article  CAS  Google Scholar 

  77. Klumpp, E., Contreras-Ortega, C., Klahre, P., Tino, F.J., Yapar, S., Portillo, C., Stegen, S., Queirolo, F., Schwuger, M.J.: Colloids Surf. A230, 111 (2004)

    Google Scholar 

  78. Kovanda, F., Jindová, E., Lang, K., Kubát, P., Sedláková, Z.: Preparation of layered double hydroxides intercalated with organic anions and their application in LDH/poly(butyl methacrylate) nanocomposites. Appl. Clay Sci. 48, 260–270 (2010)

    Google Scholar 

  79. Zhao, H.T., Nagy, K.L.: J. Colloid Interface Sci. 274, 613 (2004)

    Article  CAS  Google Scholar 

  80. Nyambo, C., Wang, D., Wilkie, C.A.: Will layered double hydroxides give nanocomposites with polar or non-polar polymers? Polym. Adv. Technol. 20, 332–340 (2009)

    Article  CAS  Google Scholar 

  81. Leroux, F., Besse, J.-P.: Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites. Chem. Mater. 13, 3507–3515 (2001)

    Article  CAS  Google Scholar 

  82. Manzi-Nshuti, C., Wang, D., Hossenlopp, J.M., Wilkie, C.A.: Aluminum-containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano) composites of poly(methyl methacrylate). J. Mater. Chem. 18, 3091–3102 (2008)

    Article  CAS  Google Scholar 

  83. Fernon, V., Vichot, A., Colombet, P., Damme, H., Bégin, F.: Mater. Sci. Forums 152–153, 335–338 (1994)

    Article  Google Scholar 

  84. Forano, C., Costantino, U., Prévot, V., TaviotGueho, C., 2013. Layered double hydroxides (LDH), in: Bergaya, F., Lagaly, G. (Eds.), Handbook of Clay Science, 2nd edn. Part A: Fundamentals, Developments in Clay Science, vol. 5, pp. 745–782. Elsevier, Amsterdam

    Google Scholar 

  85. Zubair, Mukarram, Daud, Muhammad, Mckay, Gordon, Shehzad, Farrukh, Al-Harthi, Mamdouh: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143, 272–292 (2017)

    Article  CAS  Google Scholar 

  86. Wang, Qiang, O’Hare, Dermot: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)

    Article  CAS  Google Scholar 

  87. Adachi-Pagano, M., Forano, C., Besse, J.P.: Chem. Commun. 91 (2000)

    Google Scholar 

  88. O’Leary, S., O’Hare, D., Seeley, G.: Chem. Commun. 1506 (2002)

    Google Scholar 

  89. Jobbágy, M., Regazzoni, A.E.: J. Colloid Interface Sci. 275, 345 (2004)

    Article  CAS  Google Scholar 

  90. Naik, V.V., Ramesh, T.N., Vasudevan, S.: J. Phys. Chem. Lett. 2, 1193 (2011)

    Article  CAS  Google Scholar 

  91. Naik, V.V., Vasudevan, S.: Langmuir 27, 13276 (2011)

    Article  CAS  Google Scholar 

  92. Hibino, T., Jones, W.: J. Mater. Chem. 11, 1321 (2001)

    Article  CAS  Google Scholar 

  93. Wypych, F., Bubniak, G.A., Halma, M., Nakagaki, S.: J. Colloid Interface Sci. 264, 203 (2003)

    Article  CAS  Google Scholar 

  94. Li, L., Ma, R., Ebina, Y., Iyi, N., Sasaki, T.: Chem. Mater. 17, 4386 (2005)

    Article  CAS  Google Scholar 

  95. Wu, Q., Olafsen, A., Vistad, Ø.B., Roots, J., Norby, P.: J. Mater. Chem. 15, 4695 (2005)

    Article  CAS  Google Scholar 

  96. Gordijo, C.R., Leopoldo Constantino, V.R., Silva, D.: o. J. Solid State Chem. 2007, 180 (1967)

    Google Scholar 

  97. Hu, G., Wang, N., O’Hare, D., Davis, J.: Chem. Commun. 287 (2006)

    Google Scholar 

  98. Hu, G., O’Hare, D.: J. Am. Chem. Soc. 127, 17808 (2005)

    Article  CAS  Google Scholar 

  99. Ulibarri, M.A., Fernandez, J.M., Labajos, F.M., Rives, V.: Anionic clays with variable valence cations: synthesis and characterization of cobalt aluminum hydroxide carbonate hydrate [Co1-xAlx(OH)2](CO3)x/2..nH2O. Chem. Mat. 3, 626e30 (1991)

    Google Scholar 

  100. Ribet, S., Tichit, D., Coq, B., Ducourant B., Morato F.: Synthesis and activation of CoeMgeAl layered double hydroxides. J. Solid State Chem. 142, 382e92 (1999)

    Google Scholar 

  101. Zhang, Z., Hua, Z., Lang, J., Song, Y., Zhang, Q., Han, Q., Fan, H., Gao, M., Li, X., Yang, J.: Eco-friendly nanostructured Zn–Al layered double hydroxide photocatalysts with enhanced photocatalytic activity. CrystEngComm 21, 4607–4619 (2019)

    Article  CAS  Google Scholar 

  102. Perez-Bernal, M.E., Ruano-Casero, R.J., Benito, F., Rives, V.: J. Solid State Chem. 182, 1593 (2009)

    Article  CAS  Google Scholar 

  103. Wang, C.J., Wu, Y.A., Jacobs, R.M.J., Warner, J.H., Williams, G.R., O’Hare, D.: Chem. Mater. 23, 171 (2011)

    Article  CAS  Google Scholar 

  104. Bellezza, F., Cipiciani, A., Costantino, U., Nocchetti, M., Posati, T.: Eur. J. Inorg. Chem. 2603 (2009)

    Google Scholar 

  105. Crepaldi, E.L., Pavan, P.C., Valim, J.B.: Anion exchange in layered double hydroxides by surfactant salt formation. J. Mater. Chem. 10, 1337e43 (2000)

    Google Scholar 

  106. Oh, J.M., Hwang, S.H., Choy, J.H.: The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ionics 151, 285e91 (2002)

    Google Scholar 

  107. Ogawa, M., Kaiho, H.: Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 18, 4240e2 (2002)

    Google Scholar 

  108. Costantino, U., Marmottini, F., Nocchetti, M., Vivani, R.: New synthetic routes to hydrotalcite-like compoundsdcharacterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 1998, 1439e46 (1998)

    Google Scholar 

  109. Adachi-Pagano, M., Forano, C., Besse, J.P.: Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology. J. Mater. Chem. 13, 1988e93 (2003)

    Google Scholar 

  110. Rives, V., del Arco, M., Martín, C.: Intercalation of drugs in layered double hydroxides and theircontrolled release: a review. Appl. Clay Sci. 88–89, 239–269 (2014)

    Article  CAS  Google Scholar 

  111. Leroux, F., Adachi-Pagano, M.A., Intissar, M., Chauviere, S., Forano, C., Besse, J.P.: Delamination and re-stacking of layered double hydroxides. J. Mater. Chem. 11, 105–112 (2001)

    Article  CAS  Google Scholar 

  112. Li, F., Duan, X.: Applications of layered double hydroxides. In: Duan, X., Evans, D.G. (eds.) Structure and Bonding. Springer, vol. 119, pp. 193–223. New York, NY, USA (2006)

    Google Scholar 

  113. Haraketi, M., Hosni, K., Srasra, E.: Intercalation of salicylic acid into Zn-Al and Mg- Al layered doublehydroxides for a controlled release formulation. Colloid J. 78(4), 533–541 (2016)

    Article  CAS  Google Scholar 

  114. Yun, S.K., Pinnavaia, T.J.: Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chem. Mat. 7, 348e54 (1995)

    Google Scholar 

  115. Karmakar, A., Alam, M.: A review Study on The Methods for LDH Preparation (2019). https://www.researchgate.net/publication/334388101_A_review_Study_on_The_Methods_for_LDH_Preparation. Accessed from on 20/01/2020

  116. Lee, W.D., Im, S.S.: Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J. Polym. Sci., Part B: Polym. Phys. 45(1), 28–40 (2007)

    Article  CAS  Google Scholar 

  117. Chen, W., Feng, L., Qu, B.: Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol. 66, 913–918 (2006)

    Google Scholar 

  118. Costa, F.R., Satapathy, B.K., Wagenknechi, U., Weidisch, R., Heinrich, G.: Morphology and fracture behaviour of polyethylene/Mg–Al layered double hydroxide (LDH) nanocomposites. Eur. Polym. J. 42(9), 2140–2152 (2006)

    Google Scholar 

  119. Wu, G., Wang, L., Evans, D.G., Duan, X.: Layered double hydroxides containing intercalated zinc sulfide nanoparticles: synthesis and characterization. Eur. J. Inorg. Chem. 2006(16), n3185–n3196 (2006)

    Article  CAS  Google Scholar 

  120. Hitzky, E.R., Darder, M., Aranda, P.: J. Mater. Chem. 15, 3650 (2005)

    Article  CAS  Google Scholar 

  121. Messersmith, P.B., Stupp, S.I.: Chem. Mater. 7, 454 (1995)

    Article  CAS  Google Scholar 

  122. Darder, M., Aranda, P., Hitzky, E.R.: Adv. Mater. 19, 1309 (2007)

    Article  CAS  Google Scholar 

  123. Jacob, M.M.E., Hackett, E., Giannelis, E.P.: J. Mater. Chem. 13, 1 (2003)

    Article  CAS  Google Scholar 

  124. Hsueh, H.B., Chen, C.Y.: Polymer 44, 5275 (2003)

    Article  CAS  Google Scholar 

  125. Lee, W.D., Im, S.S., Lim, H.M., Kim, K.J.: Polymer 47, 1364 (2006)

    Article  CAS  Google Scholar 

  126. Leroux, F., Gachon, J., Besse, J.P.: J. Solid State Chem. 177, 245 (2004)

    Article  CAS  Google Scholar 

  127. Ding, P., Qu, B.J.J.: Polym. Sci. B: Polym. Phys. 44, 3165 (2006)

    Article  CAS  Google Scholar 

  128. Kuila, T., Acharya, H., Srivastava, S.K., Bholomica, A.K.: J. Appl. Polym. Sci. 108, 1329 (2008)

    Article  CAS  Google Scholar 

  129. Schollhorn, R.: Chem. Mater. 8, 1747 (1996)

    Article  Google Scholar 

  130. Tanaka, M., Park, I.Y., Kuroda, K., Kato, C.: Bull. Chem. Soc. Jpn 62, 3442 (1989)

    Article  CAS  Google Scholar 

  131. Hsueh, H.B., Chen, C.Y.: Polymer 44, 1151 (2003)

    Article  CAS  Google Scholar 

  132. Qiu, L., Chen, W., Qu, B.: Colloid Polym. Sci. 283, 1241 (2005)

    Article  CAS  Google Scholar 

  133. Ding, P., Qu, B.: J. Colloid Interface Sci. 291, 13 (2005)

    Article  CAS  Google Scholar 

  134. Qiu, L., Qu, B.: J. Colloid Interface Sci. 301, 347 (2006)

    Article  CAS  Google Scholar 

  135. Chen, W., Qu, B.: Chem. Mater. 15, 3208 (2003)

    Article  CAS  Google Scholar 

  136. Chen, W., Qu, B.: J. Mater. Chem. 14, 1705 (2004)

    Article  CAS  Google Scholar 

  137. Chen, W., Feng, L., Qu, B.J.: Chem. Mater. 16, 368 (2004)

    Article  CAS  Google Scholar 

  138. Chen, W., Feng, L., Qu, B.J.: Solid State Commun. 130, 259 (2004)

    Article  CAS  Google Scholar 

  139. Peng, H., Han, Y., Liu, T., Tjiu, W.C., He, C.: Thermochim. Acta 502, 1 (2010)

    Article  CAS  Google Scholar 

  140. Zammarano, M., Bellayer, S., Gilman, J.W., Franceschi, M., Beyer, F.L., Harris, R.H., Meriani, S.: Polymer 47, 652 (2006)

    Article  CAS  Google Scholar 

  141. Du, L., Qu, B.: Chin. J. Chem. 24, 1342 (2006)

    Article  CAS  Google Scholar 

  142. Li, B., Hu, Y., Liu, J., Chen, Z., Fan, W.: Colloid Polym. Sci. 281, 998 (2003)

    Article  CAS  Google Scholar 

  143. Huang, S., Peng, H., Tjiu, W.W., Yang, Z., Zhu, H., Tang, T., Liu, T.: J. Phys. Chem. B 114, 16766 (2010)

    Article  CAS  Google Scholar 

  144. Zhao, Y., Yang, W., Xue, Y., Wang, X., Lin, T.: J. Mater. Chem. 21, 4869 (2011)

    Article  CAS  Google Scholar 

  145. Yuan, Y., Zhang, Y., Shi, W.: Appl. Clay Sci. 53, 608 (2011)

    Article  CAS  Google Scholar 

  146. Xu, Z.P., Stevenson, G.S., Lu, C.Q., Lu, G.Q., Bartlett, P.F., Gray, P.P.: Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J. Am. Chem. Soc. 128, 3, 6–7 (2005)

    Google Scholar 

  147. Liu, Z., Ma, R., Ebina, Y., Iyi, N., Takada, K., Sasaki, T.: General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23(86), 1–7 (2006)

    Google Scholar 

  148. Marcelin, G., Stockhausen, N.J., Post, J.F.M., Schutz, A.: Dynamics and ordering of intercalated water in layered metal-hydroxides. J. Phys. Chem. 93(46), 46–50 (1989)

    Google Scholar 

  149. Pesic, L., Salipurovic, S., Markovic, V., Vucelic, D., Kagunya, W., Jones, W.: Thermalcharacteristics of a synthetic hydrotalcite-like material. J. Mater. Chem. 2(10), 69–73 (1992)

    Article  Google Scholar 

  150. Parker, L.M., Milestone, N.B., Newman, R.H.: The use of hydrotalcite as an anion absorbent. Ind. Eng. Chem. Res. 34, 1196e202 (1995). [29] Inacio, J., Taviot-Gueho, C., Forano, C., Besse, J.P.: Adsorption of MCPA pesticide by MgAl-layered double hydroxides. Appl. Clay Sci. 18(2), 55–64 (2001)

    Google Scholar 

  151. Ulibarri, M.A., Pavlovic, I., Barriga, C., Hermosıń, M.C., Cornejo, J.: Adsorption of anionic species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Appl. Clay Sci. 18, 17–27 (2001)

    Google Scholar 

  152. Kotal, M., Srivastava, S.K., Bhowmick, A.K.: Thermoplastic polyurethane and nitrile butadiene rubber blends with layered double hydroxide nanocomposites by solution blending. Polym. Int. 59(1), 2–10 (2010)

    Article  CAS  Google Scholar 

  153. Kotal, M., Kuila, T., Srivastava, S.K., Bhowmick, A.K.: Synthesis and characterization of polyurethane/Mg-Al layered double hydroxide nanocomposites. J. Appl. Polym. Sci. 114(5), 2691–2699 (2009)

    Article  CAS  Google Scholar 

  154. Yang, W., Ma, L., Song, L., Hu, Y.: Fabrication of thermoplastic polyester elastomer/layered zinc hydroxide nitrate nanocomposites with enhanced thermal, mechanical and combustion properties. Mater. Chem. Phys. 141(1), 582–588 (2013)

    Article  CAS  Google Scholar 

  155. Kotal, M., Srivastava, S.K., Bhowmick, A.K., Chakraborty, S.K.: Morphology and properties of stearate-intercalated layered double hydroxide nanoplatelet-reinforced thermoplastic polyurethane. Polym. Int. 60(5), 772–780 (2011)

    Article  CAS  Google Scholar 

  156. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng.: R: Rep. 28(1), 1–63 (2000)

    Google Scholar 

  157. Balasubramanian, M., Jawahar, P.: Nanocomposites based on inorganic nanoparticles. Polym. Nanocompos. Based Inorg. Org. Nanomater. 257–346 (2015)

    Google Scholar 

  158. Clocker, E.T., Paterek, W., Farel, N.D., Selsley, M.J.: Conversion of clay to its colloidal form by hydrodynamic attrition. Google Patents (1976)

    Google Scholar 

  159. DeKimpe, C., Gastuche, M., Brindley, G.W.: Ionic coordination in alumino-silicic gels in relation to clay mineral formation. Am. Mineral. 46(11–2), 1370–1381 (1961)

    CAS  Google Scholar 

  160. Eckel, D.F., Balogh, M.P., Fasulo, P.D., Rodgers, W.R.: Assessing organo-clay dispersion in polymer nanocomposites. J. Appl. Polym. Sci. 93(3), 1110–1117 (2004)

    Article  CAS  Google Scholar 

  161. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: J Polym. Sci., Part A: Polym. Chem. 31, 1755 (1993)

    Google Scholar 

  162. Kubies, D., Pantoustier, N., Dubois, P., Rulmont, A., Jerome, R.: Controlled ring-opening polymerization of ε-caprolactone in the presence of layered silicates and formation of nanocomposites. Macromolecules 35, 3318 (2002)

    Article  CAS  Google Scholar 

  163. Lepoittevin, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Kubies, D., Calberg, C., Jerome, R., Dubois, P.: Poly(ε-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules 3, 8385 (2002)

    Article  CAS  Google Scholar 

  164. Theng, B.K.G.: Formation and Properties of Clay-Polymer Complexes, vol. 4. Elsevier (2012)

    Google Scholar 

  165. Grim, R.: Clay Mineralogy. McGraw-Hill, New York (1968)

    Google Scholar 

  166. http://jan.ucc.nau.edu/doetqp/courses/env440/env440_2/lectures/lec19/Fig19_3.gif. Access date 4.11.06

  167. https://pslc.ws/macrog/mpm/composit/nano/modify1.htm

  168. http://www.pslc.ws/macrog/mpm/composit/nano/struct3_1.htm. Access date 4.11.06

  169. Roy, R.: The preparation and properties of synthetic clay minerals. Genese et Synthese des Argiles, Colloques Intern Centre Nat Recherche Sci (1962)

    Google Scholar 

  170. Sadhu, S., Bhowmick, A.: Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy. J. Mater. Sci. 40(7), 1633–1642 (2005)

    Article  CAS  Google Scholar 

  171. Guo, F., Aryana, S., Han, Y., Jiao, Y.: A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 8, 1696 (2018)

    Article  CAS  Google Scholar 

  172. Jlassi, K., Krupa, I., Chehimi, M.M.: Overview: clay preparation, properties, modification. In: Jlassi, K., Chehimi, M.M., Thomas, S. (eds.) Clay-Polymer Nanocomposites, pp. 1–28. Elsevier, Amsterdam, The Netherlands (2017)

    Google Scholar 

  173. Jordan, J.W.: Organophilic bentonites: i swelling in organic liquids. J. Phys. Chem. 53(2), 294–306 (1949)

    Google Scholar 

  174. Van Olphen, H.: An Introduction to Clay Colloidal Chemistry, pp. 66–67. Wiley, New York (1977)

    Google Scholar 

  175. Giannelis, E.P.: Polymer layered silicate nanocompo-sites. Adv. Mater. 8(1), 29–35 (1996)

    Article  CAS  Google Scholar 

  176. Maiti, P., Yamada, K., Okamoto, M., Ueda K., Oka-moto, K.: New polylactide/layered silicate nanocomposites: role of organoclays. Chem. Mater. 14(11), 4654–4661 (2002)

    Google Scholar 

  177. Vaia, R.A., Teukolsky, R.K., Giannelis, E.P.: Inter-layer structure and molecular environment of alkylam-monium layered silicates. Chem. Mater. 6(7), 1017–1022 (1994)

    Article  CAS  Google Scholar 

  178. Xie, W., Gao, Z., Pan, W., Hunter, D., Singh, A., Vaia, R.: Thermal Degradation chemistry of alkyl quaternary ammonium MMT. Chem. Mater. 13(9), 2979–2990 (2001)

    Article  CAS  Google Scholar 

  179. Li, Y., Ishida, H.: A study of morphology and inter-calation kinetics of polystyrene-organoclay nanocom-posites. Macromolecules 38(15), 6513–6519 (2005)

    Article  CAS  Google Scholar 

  180. Zhu, J., Morgan, A., Lamelas, F., Wilkie, C.: Fire properties of polystyrene-clay nanocomposites. Chem. Mater. 13(10), 3774–3780 (2001)

    Article  CAS  Google Scholar 

  181. Hartwig, A., Putz, D., Schartel M., Wendschuh-Josties, M.: Combustion behaviour of epoxide based nano-composites with ammonium and phosphonium bento-nites. Macromol. Chem. Phys. 204(18), 2247–2257 (2003)

    Google Scholar 

  182. Hrobarikova, J., Robert, J.L., Calberg, C., Jerome R., Grandjean, J.: Solid-state NMR study of intercalated spe-cies in poly(ε-caprolactone)/clay nanocomposites. Langmuir, 20(22), 9828–9833 (2004)

    Google Scholar 

  183. Kim, M., Park, C., Choi, W., Lee, J., Lim, J., Park, O., Kim, J.: Synthesis and material properties of syndiotactic polystyrene/organophilic clay nanocomposites. J. Appl. Polym. Sci. 92(4), 2144–2150 (2004)

    Article  CAS  Google Scholar 

  184. Xie, W., Xie, R., Pan, W., Hunter, D., Koene, B., Tan, L., Vaia, R.: Thermal stability of quaternary phosphonium modified montmorillonites. Chem. Mater. 14(11), 4837–4845 (2002)

    Article  CAS  Google Scholar 

  185. Singla, P., Mehta, R., Upadhyay, S.N.: Clay modification by the use of organic cations. Green Sustain. Chem. 2, 21–25 (2012)

    Google Scholar 

  186. Lin, J.-J., Chan, Y.-N., Lan, Y.-F.: Hydrophobic modification of layered clays and compatibility for epoxy nanocomposites. Materials 3, 2588–2605 (2010)

    Google Scholar 

  187. Mahadevaiah, N., Venkataramani, B., Prakash, B.S.J.: Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite-a breakthrough curve study. Chem. Mater. 19, 4606–4612 (2007)

    Article  CAS  Google Scholar 

  188. Lan, T., Kaviratna, P.D., Pinnavaia, T.J.: Chem. Mater. 7, 2144 (1995)

    Article  CAS  Google Scholar 

  189. Chou, C.C., Chiang, M.L., Lin, J.J.: Unusual intercalation of cationic smectite clays with detergent-ranged carboxylic ions. Macromol. Rapid Commun. 26, 1841–1845 (2005)

    Article  CAS  Google Scholar 

  190. Vo, V.S., Mahouche-Chergui, S., Babinot, J., Nguyen, V.H., Naili, S., Carbonnier, B.: Photo-induced SI-ATRP for the synthesis of photoclickable intercalated clay nanofillers. RSC Adv. 6, 89322–89327 (2016)

    Article  CAS  Google Scholar 

  191. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 28, 1–63 (2000)

    Article  Google Scholar 

  192. Beyer, G.: Nanocomposites: a new class of flame retardants for polymers. Plast. Addit. Compd. 4, 22–28 (2002)

    Article  CAS  Google Scholar 

  193. Gurses, A.: Introduction to Polymer-Clay Nanocomposites; Pan Stanford: Singapore, 54 (2015). Fischer, H., Gielgens, L., Koster, T.: Nanocomposites from polymers and layered minerals. Acta Polym. 50, 122–126 (1999)

    Google Scholar 

  194. Mittal, V.: Advances in Polyolefin Nanocomposites. CRC Press, Boca Raton, FL, USA (2010)

    Book  Google Scholar 

  195. Rane, A.V., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Clay–polymer composites: design of clay polymer nanocomposite by mixing. In: Clay-Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, pp. 113–144 (2017)

    Google Scholar 

  196. Cherifi, Z., Boukoussa, B., Zaoui, A., Belbachir, M., Meghabar, R.: Structural, morphological and thermal properties of nanocomposites poly (GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason. Sonochem. 48, 188–198 (2018)

    Article  CAS  Google Scholar 

  197. Lopez-Manchado, M., Herrero, B., Arroyo, M.: Organoclay–natural rubber nanocomposites synthesized by mechanical and solution mixing methods. Polym. Int. 53, 1766–1772 (2004)

    Article  CAS  Google Scholar 

  198. Vassiljeva, V., Kirikal, K.-K., Hietala, S., Kaljuvee, T., Mikli, V., Rähn, M., Tarasova, E., Krasnou, I., Viirsalu, M., Savest, N.: One-step carbon nanotubes grafting with styrene-co-acrylonitrile by reactive melt blending for electrospinning of conductive reinforced composite membranes. Fullerenes Nanotub. Carbon Nanostruct. 25, 667–677 (2017)

    Article  CAS  Google Scholar 

  199. Lago, E., Toth, P.S., Pugliese, G., Pellegrini, V., Bonaccorso, F.: Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties. RSC Adv. 6, 97931–97940 (2016)

    Article  CAS  Google Scholar 

  200. Abbasian, M., Pakzad, M., Amirmanesh, M.: Polymericaly modified clays to preparation of polystyrene nanocomposite by nitroxide mediated radical polymerization and solution blending methods. Polym. Compos. 38, 1127–1134 (2017)

    Article  CAS  Google Scholar 

  201. Debnath, D., Dhibar, A.K., Khatua, B.: Studies on the morphology and properties of PMMA-organoclay nanocomposites with reference to the manufacturing techniques. Polym. Plast. Technol. Eng. 49, 1087–1094 (2010)

    Article  CAS  Google Scholar 

  202. Ports, B.F., Weiss, R.: One-step melt extrusion process for preparing polyolefin/clay nanocomposites using natural montmorillonite. Ind. Eng. Chem. Res. 49, 11896–11905 (2010)

    Article  CAS  Google Scholar 

  203. Jollands, M., Gupta, R.K.: Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites. J. Appl. Polym. Sci. 118, 1489–1493 (2010)

    CAS  Google Scholar 

  204. Yarahmadi, N., Jakubowicz, I., Hjertberg, T.: Development of poly(vinyl chloride)/montmorillonite nanocomposites using chelating agents. Polym. Degrad. Stab. 95, 132–137 (2010)

    Article  CAS  Google Scholar 

  205. Albdiry, M., Yousif, B., Ku, H., Lau, K.: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J. Compos. Mater. 47, 1093–1115 (2013)

    Article  Google Scholar 

  206. Ercan, N., Durmus, A., Ka¸sgöz, A.: Comparing of melt blending and solution mixing methods on the physical properties of thermoplastic polyurethane/organoclay nanocomposite films. J. Thermoplast. Compos. Mater. 30, 950–970 (2017)

    Google Scholar 

  207. Quigley, J.P., Baird, D.G.: Improved mechanical properties of organoclay/nylon 6 nanocomposites prepared via a supercritical carbon dioxide-aided, melt blending method. Polym. Compos. 36, 527–537 (2015)

    Article  CAS  Google Scholar 

  208. Huang, Y., Yang, K., Dong, J.Y.: Copolymerization of ethylene and 10-undecen-1-ol using a montmorillonite-intercalated metallocene catalyst: synthesis of polyethylene/montmorillonite nanocomposites with enhanced structural stability. Macromol. Rapid Commun. 27, 1278–1283 (2006)

    Article  CAS  Google Scholar 

  209. Asensio, M., Herrero, M., Núñez, K., Gallego, R., Merino, J.C., Pastor, J.M.: In situ polymerization of isotactic polypropylene sepiolite nanocomposites and its copolymers by metallocene catalysis. Eur. Polym. J. 100, 278–289 (2018)

    Article  CAS  Google Scholar 

  210. Ozkose, U.U., Altinkok, C., Yilmaz, O., Alpturk, O., Tasdelen, M.A.: In-situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. Eur. Polym. J. 88, 586–593 (2017)

    Article  CAS  Google Scholar 

  211. Herrero, M., Núñez, K., Gallego, R., Merino, J.C., Pastor, J.M.: Control of molecular weight and polydispersity in polyethylene/needle-like shaped clay nanocomposites obtained by in situ polymerization with metallocene catalysts. Eur. Polym. J. 75, 125–141 (2016)

    Article  CAS  Google Scholar 

  212. Hua, J., Liu, J., Wang, X., Yue, Z., Yang, H., Geng, J., Ding, A.: Structure and properties of a cis-1, 4-polybutadiene/organic montmorillonite nanocomposite prepared via in situ polymerization. J. Macromol. Sci. Part B 56, 451–461 (2017)

    Article  CAS  Google Scholar 

  213. Dietlin, C., Schweizer, S., Xiao, P., Zhang, J., Morlet-Savary, F., Graff, B., Fouassier, J.-P., Lalevée, J.: Photopolymerization upon LEDs: new photoinitiating systems and strategies. Polym. Chem. 6, 3895–3912 (2015)

    Article  CAS  Google Scholar 

  214. Chen, M., Zhong, M., Johnson, J.A.: Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167–10211 (2016)

    Article  CAS  Google Scholar 

  215. Yagci, Y., Jockusch, S., Turro, N.J.: Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43, 6245–6260 (2010)

    Article  CAS  Google Scholar 

  216. Utama, R.H., Drechsler, M., Förster, S., Zetterlund, P.B., Stenzel, M.H.: Synthesis of pH-responsive nanocapsules via inverse miniemulsion periphery RAFT polymerization and post-polymerization reaction. ACS Macro Lett. 3, 935–939 (2014)

    Article  CAS  Google Scholar 

  217. Beyazit, S., Bui, B.T.S., Haupt, K., Gonzato, C.: Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 62, 1–21 (2016)

    Article  CAS  Google Scholar 

  218. Arslan, M., Tasdelen, M.: Polymer Nanocomposites via click chemistry reactions. Polymers 9, 499 (2017)

    Article  CAS  Google Scholar 

  219. Yadav, P., Chacko, S., Kumar, G., Ramapanicker, R., Verma, V.: Click chemistry route to covalently link cellulose and clay. Cellulose 22, 1615–1624 (2015)

    Article  CAS  Google Scholar 

  220. Xie, H., Wu, Q., Shi, W.: Preparation of photopolymerized nanocomposites through intercalating multifunctional acrylated siloxane into montmorillonite. Appl. Clay Sci. 99, 164–170 (2014)

    Article  CAS  Google Scholar 

  221. Shanmugam, S., Boyer, C.: Stereo-, temporal and chemical control through photoactivation of living radical polymerization: Synthesis of block and gradient copolymers. J. Am. Chem. Soc. 137, 9988–9999 (2015)

    Article  CAS  Google Scholar 

  222. Zhang, H., Zhu, X., Wu, Y., Song, H., Ba, X.: High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via “click” chemistry. J. Mater. Sci. 50, 4387–4395 (2015)

    Article  CAS  Google Scholar 

  223. Pan, C., Liu, P.: Surface modification of attapulgite nanorods with nitrile butadiene rubber via thiol-ene interfacial click reaction: grafting or crosslinking. Ind. Eng. Chem. Res. 57, 4949–4954 (2018)

    Article  CAS  Google Scholar 

  224. Gul, S., Kausar, A., Muhammad, B., Jabeen, S.: Research progress on properties and applications of polymer/clay nanocomposite. Polym. Plast. Technol. Eng. 55, 684–703 (2016)

    Article  CAS  Google Scholar 

  225. Kumar, S., Nehra, M., Dilbaghi, N., Tankeshwar, K., Kim, K.H.: Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 80, 1–38 (2018)

    Article  CAS  Google Scholar 

  226. Wang, X.-C., Zhu, Q.-S., Dong, B.-B., Wu, H.-H., Liu, C.-T., Shen, C.-Y., … Geng, T.: The effects of nanoclay and deformation conditions on the inelastic behavior of thermoplastic polyurethane foams. Polym. Test. 79, 106043 (2019)

    Google Scholar 

  227. Pizzatto, L., Lizot, A., Fiorio, R., Amorim, C.L., Machado, G., Giovanela, M., Zattera, A.J., Crespo, J.S.: Mater. Sci. Eng., C 29, 474 (2009)

    Google Scholar 

  228. Arenas, J.P., Castaño, J.L., Troncoso, L., Auad, M.L.: Thermoplastic polyurethane/laponite nanocomposite for reducing impact sound in a floating floor. Appl. Acoust. 155, 401–406 (2019)

    Article  Google Scholar 

  229. Pattanayak, A., Jana, S.C.: Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. Polymer 46(10), 3275–3288 (2005)

    Article  CAS  Google Scholar 

  230. Barick, A.K., Tripathy, D.K.: Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Appl. Clay Sci. 52(3), 312–321 (2011)

    Article  CAS  Google Scholar 

  231. Mahallati, Paridokht, Arefazar, A., Naderi, Ghasem: Thermoplastic elastomer nanocomposites based on PA6/NBR. Int. Polym. Process.—Int. Polym. Proc. 25, 132–138 (2010)

    Article  CAS  Google Scholar 

  232. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S.: Graphene based materials: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)

    Article  CAS  Google Scholar 

  233. Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43, 6515–6530 (2010)

    Article  CAS  Google Scholar 

  234. Moniruzzaman, M., Winey, K.I.: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  235. Thostenson, E.T., Ren, Z.F., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  CAS  Google Scholar 

  236. Shanmugharaj, A., Bae, J., Lee, K., Noh, W., Lee, S., Ryu, S.: Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67, 1813–1822 (2007)

    Article  CAS  Google Scholar 

  237. Bandaru, P.R.: Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7, 1239–1267 (2007)

    Article  CAS  Google Scholar 

  238. Iijima, S.: Helical microtubes of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  239. Bernholc, J., Brenner, D., Nardelli, M.B., Meunier, V., Roland, C.: Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res. 32, 347–375 (2002)

    Article  CAS  Google Scholar 

  240. Du, J.H., Bai, J., Cheng, H.M.: The present status and key problems of carbon nanotubes based polymer composites. Express Polym Lett. 1, 253–273 (2007)

    Article  CAS  Google Scholar 

  241. de Heer, W.A.: Nanotubes and the pursuit of applications. MRS Bull. 29, 281–285 (2004)

    Article  Google Scholar 

  242. Uchida, T., Kumar, S.: Single wall carbon nanotube dispersion and exfoliation in polymers. J. Appl. Polym. Sci. 98, 985–989 (2005)

    Article  CAS  Google Scholar 

  243. Steinhauser, D.: Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym. Lett. 6, 927–936 (2012)

    Article  CAS  Google Scholar 

  244. Sui, G., Zhong, W.H., Yang, X.P., Yu, Y.H.: Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater. Sci. Eng., A 485, 524–531 (2008)

    Article  CAS  Google Scholar 

  245. Meyyappan, M., Delzeit, L., Cassell, A., Hash, D.: Carbon nanotube growth by PECVD: a review. Plasma Sourc. Sci. Technol. 12(2), 205–216 (2003)

    Article  CAS  Google Scholar 

  246. Lin, T., Bajpai, V., Ji, T., Dai, L.: Chemistry of carbon nanotubes. Aust. J. Chem. 56(7), 635–651 (2003)

    Article  CAS  Google Scholar 

  247. https://en.wikipedia.org/wiki/Carbon_nanotube#Nanotube_types. Accessed on 30/01/2020

  248. Yu, M.F., Files, B.S., Arepalli, S., Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    Article  CAS  Google Scholar 

  249. Xie, S., Li, W., Pan, Z., Chang, B., Lianfeng, S.: Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 61(7), 1153–1158 (2000)

    Article  CAS  Google Scholar 

  250. Elliott, J.A., Sandler, J.K.W., Windle, A.H., Young, R.J., Shaffer, M.S.P.: Collapse of single-walled carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92(9), 1–4 (2004)

    Article  CAS  Google Scholar 

  251. Iijima, S., Ichihashi, T.: Nature (London) 363, 603 (1993)

    Article  CAS  Google Scholar 

  252. Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vazquez, J., Beyers, R.: Nature (London) 363, 605 (1993)

    Article  CAS  Google Scholar 

  253. Ebbesen, T.W., Ajayan, P.M.: Nature (London) 358, 220 (1992)

    Article  CAS  Google Scholar 

  254. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., Fischer, J.E.: Nature (London) 388, 756 (1997)

    Article  CAS  Google Scholar 

  255. http://www.timesnano.com/en/show.php?prt=2,72,135&id=406. Accessed 30/01/2020

  256. Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguex-Macia, F., Colbert, D.T., Smalley, R.E.: Science 280, 1253 (1998)

    Article  CAS  Google Scholar 

  257. Mamalis, A.G., Vogtländer, L.O.G., Markopoulos, A.: Precis. Eng. 28, 16 (2004)

    Article  Google Scholar 

  258. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y.: Science 274, 1701 (1996)

    Article  CAS  Google Scholar 

  259. Kumar, Mukul, Ando, Yoshinori: Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)

    Article  CAS  Google Scholar 

  260. Gogotsi, Y.G., Yoshimura, M.: Nature 367, 628 (1994)

    Article  CAS  Google Scholar 

  261. Gogotsi, Y., Libera, J.A., Yoshimura, M.: Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000). https://doi.org/10.1557/jmr.2000.0370

    Article  CAS  Google Scholar 

  262. Calderon Moreno, J.M., Yoshimura, M.: Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon. J. Am. Chem. Soc. 123(4), 741–742 (2001). https://doi.org/10.1021/ja003008h

    Article  CAS  Google Scholar 

  263. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process. J. Nanosci. Nanotechnol. 4(4), 307–316. https://doi.org/10.1166/jnn.2004.066

  264. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanék, D., Fischer, J.E., Smalley, R.E.: Science 273(1996) 483

    Google Scholar 

  265. Tang, Z.K., Zhang, L., Wang, N., Zhang, X.X., Wen, G.H., Li, G.D.: Science 292, 2462 (2001)

    Article  CAS  Google Scholar 

  266. Ago, H., Obshima, S., Uchida, K., Yumura, M.: J Phys Chem B 105, 10453 (2001)

    Article  CAS  Google Scholar 

  267. Fan, S., Liang, W., Dang, H., Franklin, N., Tombler, T., Chapline, M.: Phys E: LowDimensional Syst. Nanostruct. 8(2), 179 (2000)

    Article  CAS  Google Scholar 

  268. Ebbesen, T.W., Ajayan, P.M., Hiura, H., Tanigaki, K.: Purification of nanotubes. Nature 367(6463), 519 (1994)

    Article  Google Scholar 

  269. Montoro, L.A., Rosolen, J.M.: A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 44(15), 3293–3301 (2006)

    Article  CAS  Google Scholar 

  270. Ye, X.R., Chen, L.H., Wang, C., Aubuchon, J.F., Chen, I.C., Gapin, A.I., et al.: Electrochemical modification of vertically aligned carbon nanotube arrays. J. Phys. Chem. B 110(26), 12938–12942 (2006)

    Article  CAS  Google Scholar 

  271. Sato, Y., Ogawa, T., Motomiya, K., Shinoda, K., Jeyadevan, B., Tohji, K., et al.: Purification of MWCNTs combining wet grinding, hydrothermal treatment, and oxidation. J. Phys. Chem. B 105(17), 3387–3392 (2001)

    Article  CAS  Google Scholar 

  272. Yu, A.P., Bekyarova, E., Itkis, M.E., Fakhrutdinov, D., Webster, R., Haddon, R.C.: Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. J. Am. Chem. Soc. 128(30), 9902–9908 (2006)

    Article  CAS  Google Scholar 

  273. Thien-Nga, L., Hernadi, K., Ljubovic, E., Garaj, S., Forro, L.: Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett. 2(12), 1349–1352 (2002)

    Article  CAS  Google Scholar 

  274. Coleman, J.N., Dalton, A.B., Curran, S., et al.: Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12(2), 213–216 (2000)

    Article  CAS  Google Scholar 

  275. Dalton, A.B., Stephan, C., Coleman, J.N., et al.: Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J. Phys. Chem. B 104(43), 10012–10016 (2000)

    Article  CAS  Google Scholar 

  276. Moore, V.C., Strano, M.S., Haroz, E.H., et al.: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3(10), 1379–1382 (2003)

    Article  CAS  Google Scholar 

  277. Jeon, I.-Y., Chang, D., Nanjundan, A.K., Baek, J.-B.: Functionalization of Carbon Nanotubes (2011). https://doi.org/10.5772/18396

  278. Sun, Y.-P., Fu, K., Lin, Y., Huang, W.: Functionalized Carbon Nanotubes: Properties and Applications. Acc. Chem. Res. 35(12), 1096–1104 (2002). https://doi.org/10.1021/ar010160v

    Article  CAS  Google Scholar 

  279. Le, Van, Ngo, Cao, Le, Quoc, Tung, Ngo Trinh, Nguyễn, Nghĩa, Vu, Minh: Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035017 (2013). https://doi.org/10.1088/2043-6262/4/3/035017

    Article  CAS  Google Scholar 

  280. Wang, X., Zhou, Z., Chen, F.: Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials (Basel, Switzerland) 10(12), 1375 (2017). https://doi.org/10.3390/ma10121375

    Article  CAS  Google Scholar 

  281. Price, B., Hudson, Jared, Tour, James: Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J. Am. Chem. Soc. 127, 14867–14870 (2005). https://doi.org/10.1021/ja053998c

    Article  CAS  Google Scholar 

  282. Yang, Y.-K.,Qiu, S., He, C., He, W., Yu, L., Xie, X.: Green chemical functionalization of multi-walled carbon nanotubes with poly(ε-caprolactone) in ionic liquids. Appl. Surf. Sci. 257, 1010–1014 (2010). https://doi.org/10.1016/j.apsusc.2010.08.009

  283. Zhou, Y., Fang, Y., Ramasamy, R.P.: Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors (Basel, Switzerland) 19(2), 392 (2019). https://doi.org/10.3390/s19020392

    Article  CAS  Google Scholar 

  284. Hu, C.-Y., Xu, Y.-J., Duo, S.-W., Zhang, R.-F., Li, M.-S.: Non-covalent functionalization of carbon nanotubes with surfactants and polymers. J. Chin. Chem. Soc. 56(2), 234–239 (2009). https://doi.org/10.1002/jccs.200900033

    Article  CAS  Google Scholar 

  285. Zhao, Y.-L., Stoddart, J.F.: Non-covalent functionalization of single-walled carbon nanotubes. Acc. Chem. Res. 42(8), 1161–1171 (2009). https://doi.org/10.1021/ar900056z

    Article  CAS  Google Scholar 

  286. Azarniya, A., Safavi, M., Sovizi, S., Azarniya, A., Chen, B., Hosseini, M., Reza, H., Ramakrishna, S.: Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals 7, 384 (2017). https://doi.org/10.3390/met7100384

    Article  CAS  Google Scholar 

  287. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y., Joo, S.W.: Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 9(1), 393 (2014). https://doi.org/10.1186/1556-276X-9-393

    Article  CAS  Google Scholar 

  288. Zuoli, H., Zhou, G., Byun, J.-H., Lee, S.K., Um, M.-K., Park, B., Chou, T.-W.: Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors. Nanoscale 11, 5884–5890 (2019)

    Article  Google Scholar 

  289. Fang, C., Yang, R., Zhang, Z., Zhou, X., Lei, W., Cheng, Y., Wang, D.: Effect of multi-walled carbon nanotubes on the physical properties and crystallisation of recycled PET/TPU composites. RSC Adv. 8(16), 8920–8928 (2018)

    Article  CAS  Google Scholar 

  290. Lepak-Kuc, S., Podsiadły, B., Skalski, A., Janczak, D., Jakubowska, M., Lekawa-Raus, A.: Highly conductive carbon nanotube-thermoplastic polyurethane nanocomposite for smart clothing applications and beyond. Nanomaterials 9(9), 1287 (2019)

    Article  CAS  Google Scholar 

  291. Sun, W.-J., Xu, L., Jia, L.-C., Zhou, C.-G., Xiang, Y., Yin, R.-H., Li, Z.-M.: Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Compos. Sci. Technol. 107695 (2019)

    Google Scholar 

  292. Tran, L., Kim, J.: A comparative study of the thermoplastic polyurethane/carbon nanotube and natural rubber/carbon nanotube composites according to their mechanical and electrical properties. Fibers Polym. 19(9), 1948–1955 (2018)

    Article  CAS  Google Scholar 

  293. Kanbur, Y., Tayfun, U.: Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites. J. Thermoplast. Compos. Mater. 31(12), 1661–1675 (2018)

    Article  CAS  Google Scholar 

  294. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71(9), 622–634 (1947)

    Article  CAS  Google Scholar 

  295. A. Geim, This Month in Physics History: October 22, 2004: Discovery of Graphene, APS News, 2009

    Google Scholar 

  296. Gogotsi, Y., Presser, V.: Carbon Nanomaterials, 2nd edn, Taylor & Francis (2013)

    Google Scholar 

  297. Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., de Abajo, F.J.G., Pruneri, V., Altug, H.: Mid-infrared plasmonic biosensing with graphene. Science 349(6244), 165–168 (2015)

    Article  CAS  Google Scholar 

  298. Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5(1), 26–41 (2011)

    Article  CAS  Google Scholar 

  299. Stadler, J., Schmid, T., Zenobi, R.: Nanoscale chemical imaging of single-layer graphene. ACS Nano 5(10), 8442–8448 (2011)

    Article  CAS  Google Scholar 

  300. Kim, D.W., Kim, Y.H., Jeong, H.S., Jung, H.T.: Direct visualization of large-area graphene domains and boundaries by optical birefringency. Nat. Nanotechnol. 7(1), 29–34 (2012)

    Article  CAS  Google Scholar 

  301. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    Article  CAS  Google Scholar 

  302. Wang, W.D., Shen, C.L., Li, S., Min, J.J., Yi, C.L.: Mechanical properties of single layer graphene nanoribbons through bending experimental simulations. AIP Adv. 4(3) (2014)

    Google Scholar 

  303. Stolyarova, E., Rim, K.T., Ryu, S.M., et al.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. U.S.A. 104(22), 9209–9212 (2007)

    Article  CAS  Google Scholar 

  304. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Two-dimensional gas of massless dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  CAS  Google Scholar 

  305. Zhang, Y.B., Tan, Y.W., Stormer, H.L., et al.: Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    Article  CAS  Google Scholar 

  306. Berger, C., Song, Z.M., Li, T.B., et al.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108(52), 19912–19916 (2004)

    Article  CAS  Google Scholar 

  307. Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)

    Article  CAS  Google Scholar 

  308. Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146 (9–10) 351–355 (2008)

    Google Scholar 

  309. Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006)

    Article  CAS  Google Scholar 

  310. Lee, C., Wei, X., Kysar, J.W., et al.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  CAS  Google Scholar 

  311. Balandin, A.A., Ghosh, S., Bao, W.Z., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  CAS  Google Scholar 

  312. Lu, X., Yu, M., Huang, H., Ruoff, R.S.: Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10, 269–272 (1999)

    Article  CAS  Google Scholar 

  313. Lang, B.: A LEED Study of the deposition of carbon on platinum crystal surfaces. Surf. Sci. 53, 317–329 (1975)

    Article  CAS  Google Scholar 

  314. Liang, X., et al.: Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites. Nano Lett. 9, 467–472 (2009)

    Article  CAS  Google Scholar 

  315. Rao, C.N.R., Sood, A.K.: Graphene: Synthesis, Properties, and Phenomena. Wiley, Weinheim, Germany (2013)

    Google Scholar 

  316. Viculis, L.M., Mack, J.J., Mayer, O.M., Hahn, H.T., Kaner, R.B.: Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15, 974–978 (2005)

    Article  CAS  Google Scholar 

  317. Staudenmaier, L.: VerfahrenzurDarstellung der Graphitsäure. Berichte der DeutschenChemischen Gesellschaft 31, 1481–1487 (1898)

    Article  CAS  Google Scholar 

  318. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  319. Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F., Chhowalla, M.: Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 92 (2008)

    Google Scholar 

  320. Shin, H.-J., et al.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater. 19, 1987–1992 (2009)

    Article  CAS  Google Scholar 

  321. Zhou, X., Zhang, J., Wu, H., Yang, H., Zhang, J., Guo, S.: Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J. Phys. Chem. C 115, 11957–11961 (2011)

    Article  CAS  Google Scholar 

  322. https://www.hielscher.com/ultrasonic-graphene-preparation.htm. Accessed on 30-04-2020

  323. Liu, F., Wang, C., Sui, X., et al.: Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy 1, 173–199 (2019). https://doi.org/10.1002/cey2.14

    Article  Google Scholar 

  324. Achee, T.C., Sun, W., Hope, J.T., et al.: High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci. Rep. 8, 14525 (2018). https://doi.org/10.1038/s41598-018-32741-3

    Article  CAS  Google Scholar 

  325. Behabtu, N., Lomeda, J., Green, M., Higginbotham, A., Sinitskii, A., Kosynkin, D., Tsentalovich, D., Parra-V.A., Schmidt, J., Kesselman, E., Cohen, Y., Talmon, Y., Tour, J., Pasquali, M.: Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 5, 406–411 (2010). https://doi.org/10.1038/nnano.2010.86

  326. Lu, W., Liu, S., Qin, X., Wang, L., Tian, J., Luo, Y., … Sun, X.: High-yield, large-scale production of few-layer graphene flakes within seconds: using chlorosulfonic acid and H2O2 as exfoliating agents. J. Mater. Chem. 22(18), 8775 (2012). https://doi.org/10.1039/c2jm16741g

  327. Cai, M., Thorpe, D., Adamson, D.H., Schniepp, H.C.: Methods of graphite exfoliation. J. Mater. Chem. 22(48), 24992 (2012). https://doi.org/10.1039/c2jm34517j

    Article  CAS  Google Scholar 

  328. Mtibe, A., Mokhothu, T.H., John, M.J., Mokhena, T.C., Mochane, M.J.: Fabrication and characterization of various engineered nanomaterials. Handb. Nanomater. Ind. Appl. 151–171 (2018). https://doi.org/10.1016/b978-0-12-813351-4.00009-2

  329. Marcano, D.C., et al.: Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  330. Choucair, M., Thordarson, P., Stride, J.A.: Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 4, 30–33 (2009)

    Article  CAS  Google Scholar 

  331. Van Bommel, A.J., Crombeen, J.E., Van Tooren, A.: LEED and auger electron observations of the SiC(0001) surface. Surf. Sci. 48, 463–472 (1975)

    Article  Google Scholar 

  332. Juang, Z.-Y., et al.: Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026–2031 (2009)

    Article  CAS  Google Scholar 

  333. Eizenberg, M., Blakely, J.M.: Carbon monolayer phase condensation on Ni(111). Surf. Sci. 82, 228–236 (1979)

    Article  CAS  Google Scholar 

  334. Somani, P.R., Somani, S.P., Umeno, M.: Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 430, 56–59 (2006)

    Article  CAS  Google Scholar 

  335. Li, X., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  CAS  Google Scholar 

  336. Obraztsov, A.N., Zolotukhin, A.A., Ustinov, A.O., Volkov, A.P., Svirko, Y., Jefimovs, K.: DC discharge plasma studies for nanostructured carbon CVD. Diam. Relat. Mater. 12, 917–920 (2003)

    Article  CAS  Google Scholar 

  337. Wang, J.J., et al.: Free-standing subnanometer graphite sheets. Appl. Phys. Lett. 85, 1265–1267 (2004)

    Article  CAS  Google Scholar 

  338. Wu, X., Liu, Y., Yang, H., Shi, Z.: Large-scale Synthesis of high-quality graphene sheets by an improved alternating current arc-discharge method. RSC Advances 6(95), 93119–93124 (2016). https://doi.org/10.1039/c6ra22273k

    Article  CAS  Google Scholar 

  339. Li, N., Wang, Z., Shi, Z.: Synthesis of graphenes with arc-discharge method (2011). https://doi.org/10.5772/14961

  340. Kosynkin, D., Higginbotham, A., Sinitskii, A., Lomeda, J., Dimiev, A., Rice, B., Tour, J.: Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 458, 872–876 (2009). https://doi.org/10.1038/nature07872

  341. Kosynkin, D., Higginbotham, A., Sinitskii, A., et al.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  CAS  Google Scholar 

  342. Panchakarla, L.S., et al.: Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)

    CAS  Google Scholar 

  343. Ci, L., et al.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)

    Article  CAS  Google Scholar 

  344. 235. Aïssa, B., Memon, N., Ali, A., Khraisheh, M.: Recent progress in the growth and applications of graphene as a smart material: a review. Front. Mater. 2 (2015). https://doi.org/10.3389/fmats.2015.00058

  345. 236. Jeon, H., Kim, Y., Yu, W.-R., Lee, J.: Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing. Compos. Part B: Eng. 189, 107912 (2020). https://doi.org/10.1016/j.compositesb.2020.107912

  346. 237. Osicka, J., Mrlik, M., Ilcikova, M., Krupa, I., Sobolčiak, P., Plachý, T., Mosnáček, J.: Controllably coated graphene oxide particles with enhanced compatibility with poly(ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. Reactive Function. Polym. 104487 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104487

  347. 238. Loomis, J., King, B., Burkhead, T., Xu, P., Bessler, N., Terentjev, E., Panchapakesan, B.: Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 23(4), 045501 (2012)

    Google Scholar 

  348. 239. Liu, M., Kinloch, I.A., Young, R.J., Papageorgiou, D.G.: Modelling mechanical percolation in graphene-reinforced elastomer nanocomposites. Compos. Part B: Eng. 107506 (2019). https://doi.org/10.1016/j.compositesb.2019.107506

  349. Chen, W., Yan, L., Bangal, P.R.: Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 114(47), 19885–19890 (2010). https://doi.org/10.1021/jp107131v

    Article  CAS  Google Scholar 

  350. Sachyani Keneth, E., Scalet, G., Layani, M., Tibi, G., Degani, A., Auricchio, F., Magdassi, S.: Soft robotics. 123–129 (2020). https://doi.org/10.1089/soro.2018.0159

  351. Walter, M., Friess, F., Krus, M., Zolanvari, SMH., Grün, G., Kröber, H., Pretsch, T.: Shape memory polymer foam with programmable apertures. Polym (Basel). 12(9), E1914, PMID: 32854329 (2020). https://doi.org/10.3390/polym12091914

  352. Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., Young, R.J. Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12(4), 2228–2267 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, A., Dasgupta, P., Basak, S. (2020). Anisotropic Nanofillers in TPE. In: Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-9085-6_2

Download citation

Publish with us

Policies and ethics