Skip to main content

CaaS: Enabling Congestion Control as a Service to Optimize WAN Data Transfer

  • Conference paper
  • First Online:
Security and Privacy in Digital Economy (SPDE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1268))

Included in the following conference series:

Abstract

TCP congestion control is essential for improving performance of data transfer. Traditional TCP congestion control algorithm is designed for the wired network with the assumptive goal of attaing higher throughput as possible for QoE. However, Internet today is constantly evolving and many different network architectures (Cellular network, high BDP network, Wi-Fi network, etc.) coexist for data transfer service. Futhermore, the emerging applications (live video, augmented and virtual reality, Internet-of-Things, etc.) present different requirements (low latency, low packet loss rate, low jitter, etc.) for data transfer service. Unfortunately, operating systems (Windows, MacOS, Android, etc.) today still rigidly stick to the single built-in congestion control algorithm (with Cubic for Linux, MacOS, Android and CTCP for Windows) for all connections, no matter if it is ill-suited for current network condition, or if there are better schemes for use. To tackle above issues, we articulate a vision of providing congestion control as a service to enable: (i) timely deployment of novel congestion control algorithms, (ii) dynamical adaption of congestion control algorithm according to the network condition, (iii) and meeting the diversified QoE preference of applications. We design and implement CaaS in Linux, our preliminary experiment shows the feasibility and benefits of CaaS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dukkipati, N., Mckeown, N.: Why flow-completion time is the right metric for congestion control. ACM SIGCOMM Comput. Commun. Rev. 36(1), 59–62 (2006)

    Article  Google Scholar 

  2. Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks. ACM SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

    Article  MathSciNet  Google Scholar 

  3. Baiocchi, A., Castellani, A.P., Vacirca, F.: YeAH-TCP: yet another highspeed TCP. In: Proceedings of PFLDnet, Roma, Italy, pp. 37–42 (2007)

    Google Scholar 

  4. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: INFOCOM 2004. Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE (2004)

    Google Scholar 

  5. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)

    Article  Google Scholar 

  6. Park, S., et al.: ExLL: an extremely low-latency congestion control for mobile cellular networks. In: The 14th International Conference (2018)

    Google Scholar 

  7. Abbasloo, S., Li, T., Xu, Y., et al.: Cellular Controlled Delay TCP (C2TCP). arXiv, Networking and Internet Architecture (2018)

    Google Scholar 

  8. Floyd, S.: RFC 3649. https://www.ietf.org/rfc/rfc3649.txt. Accessed 10 June 2019

  9. Brakmo, L.S., Peterson, L.L.: TCP Vegas: end to end congestion avoidance on a global Internet. IEEE J. Sel. Areas Commun. 13(8), 1465–1480 (1995)

    Article  Google Scholar 

  10. Caini, C., Firrincieli, R.: TCP Hybla: a TCP enhancement for heterogeneous networks. Int. J. Satell. Commun. Netw. 22(6), 547–566 (2004)

    Article  Google Scholar 

  11. Yan, F.Y., Ma, J., Hill, G.D., et al.: Pantheon: the training ground for internet congestion-control research. In: Usenix Annual Technical Conference, pp. 731–743 (2018)

    Google Scholar 

  12. Tan, K., et al.: A compound TCP approach for high-speed and long distance networks. In: Infocom IEEE International Conference on Computer Communications. IEEE (2007)

    Google Scholar 

  13. Liu, S., Basar, T., Srikant, R.: TCP-Illinois: a loss-and delay-based congestion control algorithm for high-speed networks. Perform. Eval. 65(6), 417–440 (2008)

    Article  Google Scholar 

  14. Cardwell, N., Cheng, Y., et al.: BBR: congestion-based congestion control. ACM Queue 14(5), 20–53 (2016)

    Article  Google Scholar 

  15. Mascolo, S., Casetti, C., et al.: TCP Westwood: bandwidth estimation for enhanced transport over wireless links. In: 7th ACM Conference on Mobile Computing and Networking (MobiCom), Rome, Italy, pp. 287–297 (2001)

    Google Scholar 

  16. Fu, C.P., Liew, S.C.: TCP Veno: TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Area. Commun. 21(2), 216–228 (2003)

    Article  Google Scholar 

  17. Akyildiz, I.F., Zhang, X., et al.: TCP-Peach+: enhancement of TCP-Peach for satellite IP networks. IEEE Commun. Lett. 6(7), 303–305 (2002)

    Article  Google Scholar 

  18. Zaki, Y., Poetsch, T., et al.: Adaptive congestion control for unpredictable cellular networks. ACM SIGCOMM Comput. Commun. Rev. 45(4), 509–522 (2015)

    Article  Google Scholar 

  19. Winstein, K., Balakrishnan, H.: TCP ex Machina: computer-generated congestion control. Comput. Commun. Rev. 43(4), 123–134 (2013)

    Article  Google Scholar 

  20. Jay, N., Rotman, N.H., Godfrey, B., et al.: A deep reinforcement learning perspective on internet congestion control. In: International Conference on Machine Learning, pp. 3050–3059 (2019)

    Google Scholar 

  21. Dong, M., Li, Q., et al.: PCC: re-architecting congestion control for consistent high performance. In: Networked Systems Design and Implementation, pp. 395–408 (2015)

    Google Scholar 

  22. Dong, M., Meng, T., Zarchy, D., et al.: PCC Vivace: online-learning congestion control. In: Networked Systems Design and Implementation, pp. 343–356 (2018)

    Google Scholar 

  23. Linux TCP probe. https://wiki.linuxfoundation.org/networking/tcpprobe. Accessed 12 Oct 2019

  24. Netravali, R., Sivaraman, A., Das, S., et al.: Mahimahi: accurate record-and-replay for HTTP. In: Usenix Annual Technical Conference, pp. 417–429 (2015)

    Google Scholar 

  25. Balakrishnan, H., Stemm, M., et al.: Analyzing stability in wide-area network performance. Meas. Model. Comput. Syst. 25(1), 2–12 (1997)

    Google Scholar 

  26. Jobin, J., Faloutsos, M., et al.: Understanding the effects of hotspots in wireless cellular networks. In: Proceedings of the Conference of the IEEE Computer and Communications Societies, INFOCOM (2004)

    Google Scholar 

  27. Lu, D., Qiao, Y., Dinda, P.A., et al.: Characterizing and predicting TCP throughput on the wide area network. In: IEEE International Conference on Distributed Computing Systems, ICDCS (2005)

    Google Scholar 

  28. Ryan Prescott Adams and David JC MacKay: Bayesian Online Changepoint Detection. In arXiv:0710.3742v1 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianliang Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Jiang, X., Jin, G., Li, P. (2020). CaaS: Enabling Congestion Control as a Service to Optimize WAN Data Transfer. In: Yu, S., Mueller, P., Qian, J. (eds) Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, vol 1268. Springer, Singapore. https://doi.org/10.1007/978-981-15-9129-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9129-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9128-0

  • Online ISBN: 978-981-15-9129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics