Skip to main content

Biocontrol of Mosquito Vectors: A New Dimension to Control Mosquito Borne Diseases

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

The mosquito-borne diseases like malaria, filariasis and dengue are very common in tropical and subtropical parts of the world. Mosquitoes not only act as a vector of the diseases but also serve as a secondary or reservoir host of the parasite. Thus, to control these diseases, mosquito population has to be reduced. Different methods have been adopted now to control vectors, but each of them has their own merits and pitfalls. The use of insecticides to kill mosquitoes is one of the methods being followed to eradicate diseases but the method is not eco-friendly due to generation of hazardous chemicals. The emergence of insecticidal resistance mosquito is a major limitation to the traditional method of mosquitoes control using insecticides. Alternately, biocontrol of mosquito population is considered as suitable technology to prevent mosquito population. In this chapter, we described the control and prevention of mosquito transmitted diseases by controlling mosquitoes using herbal and molecular techniques. We also sketch out the biotechnological approaches to control mosquito vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari U, Ghosh A, Chandra G (2013) Nano particles of herbal origin: a recent eco-friend trend in mosquito control. J Trop Dis 3(2):167–168. https://doi.org/10.1016/S2222-1808(13)60065-1

    Article  Google Scholar 

  • Alpers MP (1988) Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua New Guinea. Parasitology 96:251–263

    Article  Google Scholar 

  • Armengol G, Hernandez J, Velez JG, Orduz S (2006) Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J Econ Entomol 99:1590–1595. https://doi.org/10.1603/0022-0493-99.5.1590

    Article  PubMed  Google Scholar 

  • Beier JC, Keating J, Githure JI, Macdonald MB, Impoinvil DE, Novak RJ (2008) Integrated vector management for malaria control. Malar J 7(1):54

    Article  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805. https://doi.org/10.1007/s00436-015-4586-9

    Article  PubMed  Google Scholar 

  • Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U (2002) Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82(11):1336–1345

    CAS  Google Scholar 

  • Blanford S, Read A, Thomas MB (2009) Thermal behavior of Anopheles stephensi in response to infection with malaria and fungal entomopathogens. Malar J 8:72

    Article  Google Scholar 

  • Budiarto R, Roedhy Poerwanto R, Edi Santosa E, Efendi D, Agusta A (2019) Agronomical and physiological characters of kaffir lime (Citrus hystrix DC) seedling under artificial shading and pruning. Emirates J Food Agric 31(3):222–230. https://doi.org/10.9755/ejfa.2019.v31.i3.1920

    Article  Google Scholar 

  • Cilliers CJ, Neser S (1991) Biological control of Lantana camara (Verbenaceae) in South Africa. Agric Ecosyst Environ 37(1-3):57–75

    Article  Google Scholar 

  • Clements AN, Paterson GD (1981) The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18:373–399

    Article  Google Scholar 

  • Cortés-Rojas DF, de Souza CR, Oliveira WP (2014) Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed 4(2):90–96. https://doi.org/10.1016/S2221-1691(14)60215-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knols BG, Bukhari T, Farenhorst M (2010) Entomopathogenic fungi as the next-generation control agents against malaria mosquitoes. Future Microbiol 5:339–341. https://doi.org/10.2217/fmb.10.11

    Article  PubMed  Google Scholar 

  • Kocaadam B, Åžanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57(13):2889–2895. https://doi.org/10.1080/10408398.2015.1077195

    Article  CAS  PubMed  Google Scholar 

  • Kumar HD, Laxmidhar S (2011) A review on phytochemical and pharmacological of Eucalyptus globulus: a multipurpose tree. Int J Res Ayurveda Pharm 2(5):1527–1530

    Google Scholar 

  • Kumar P, Mishra S, Malik A, Satya S (2011) Insecticidal properties of Mentha species: a review. Ind Crop Prod 1:802–817

    Article  Google Scholar 

  • Kumara Swamy M, Sinniah UR (2016) Patchouli (Pogostemon cablin Benth.): botany, agro technology and biotechnological aspects. Ind Crop Prod 2016:161–176

    Article  Google Scholar 

  • Kyros K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A (2018) CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol 36:11. https://doi.org/10.1038/nbt.4245

    Article  CAS  Google Scholar 

  • Lacey LA (2007) Bacillus thuringiensis sero var israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–163. https://doi.org/10.2987/8756-971X

    Article  CAS  PubMed  Google Scholar 

  • Lukwa N, Molgaard P, Furu P, Bogh C (2009) Lippia javanica (Burm F) Spreng: its general constituents and bioactivity on mosquitoes. Trop Biomed 26:85–91

    Google Scholar 

  • Maradufu A, Lubega R, Dorn F (1978) Isolation of (5E)-ocimenone, a mosquito larvicide from Tagetes minuta. Llyodia 41(2):181–182

    CAS  Google Scholar 

  • Marques J, Moles E, Urbán P, Prohens R, Busquets MA, Sevrin C, Grandfils C, Fernàndez-Busquets X (2014) Application of heparin as a dual agent with antimalarial and liposome targeting activities towards Plasmodium-infected red blood cells. Nanomedicine 10(8):1719–1728. https://doi.org/10.1016/j.nano.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Nakamura T, Mizutani J (1984) Allelopathic effects of p-methane-3-8-diole in Eucalyptus citriodora. Phytochemistry 23(12):2777–2779

    Article  CAS  Google Scholar 

  • Pattanayak P, Behera P, Das D, Panda SK (2010) Ocimum sanctum Linn. A reservoir plant for therapeutic applications: an overview. Pharm J 4(7):95–105. https://doi.org/10.4103/0973-7847.65323

    Article  CAS  Google Scholar 

  • Scholte EJ, Knols BG, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. J Insect Sci 4(1):19

    Article  Google Scholar 

  • Shaalan EAS, Canyonb D, Younesc MWF, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    Article  CAS  Google Scholar 

  • Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS (2011) Scientific basis for the therapeutic use of Cymbopogon citratus (Lemon grass). J Adv Pharm Technol Res 2(1):3–8. https://doi.org/10.4103/2231-4040.79796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith T, Charlwood JD, Takken W, Tanner M, Spiegelhalter DJ (1995) Mapping the densities of malaria vectors within a single village. Ada Trop 59:1–18

    Article  CAS  Google Scholar 

  • Szczepanik M, Zawitowska B, Szumny A (2012) Insecticidal activities of Thymus vulgaris essential oil and its components (thymol and carvacrol) against larvae of lesser mealworm, Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath J 30:129

    Google Scholar 

  • Takken W, Koenraadt CJ (2013) Ecology of parasite-vector interactions. Wageningen Academic Publishers, Wageningen, The Netherlands

    Book  Google Scholar 

  • Vallès J, Garcia S, Hidalgo O, Martín J, Pellicer J, Sanz S, Garnatje T (2011) Biology, genome evolution, biotechnological issues and research including applied perspectives in Artemisia (Asteraceae). Adv Bot Res 60:349–419. https://doi.org/10.1016/B978-0-12-385851-1.00015-9

    Article  CAS  Google Scholar 

  • Weiser J (1991) Biological control of vectors. Wiley, West Sussex, p 189

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M. (2020). Biocontrol of Mosquito Vectors: A New Dimension to Control Mosquito Borne Diseases. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_6

Download citation

Publish with us

Policies and ethics