Skip to main content

Risks and Limitations Associated with XLPE Nanocomposites and Blends

  • Chapter
  • First Online:
Crosslinkable Polyethylene Based Blends and Nanocomposites

Abstract

Crosslinked polyethylene (XLPE) nanocomposites and blends are extensively utilized in different industries owing to their superior properties and characteristics compared to uncrosslinked and pristine polyethylene (PE). These excellent properties enable XLPE nanocomposites and blends to be employed in specialized applications and conditions. Despite their numerous favorable features, they face several risks, challenges, and problems that bring limitations and restrictions for their usage in some cases. Cable industry is one of the leading industries employing XLPE nanocomposites and blends. While these materials can grant outstanding characteristics to the cable insulation (such as dielectric properties), they can also encounter operative challenges in the meantime. This chapter attempts to define these risks and limitations via a comprehensive survey in recent case studies and publications. The described topics are categorized into several parts. They include risks, challenges, and constraints associated with electrical issues, embedded nanoparticles, crosslinking agents, recyclability, surface characteristics, and aging behaviors of XLPE nanocomposites and blends. The definitions of the mentioned problems are accompanied by the most recent and updated proposed solutions to resolve them. For providing inclusive insights in each of the categories, they are additionally subcategorized based on the suggested addressing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhong S-L, Dang Z-M, Zhou W-Y, Cai H-W (2018) Past and future on nanodielectrics. IET Nanodielectrics 1:41–47. https://doi.org/10.1049/iet-nde.2018.0004

    Article  Google Scholar 

  2. Pleşa I, Noţingher P, Stancu C et al (2018) Polyethylene nanocomposites for power cable insulations. Polymers (Basel) 11:24. https://doi.org/10.3390/polym11010024

    Article  CAS  Google Scholar 

  3. Izzati WA, Arief YZ, Adzis Z, Shafanizam M (2014) Partial Discharge Characteristics of Polymer Nanocomposite Materials in Electrical Insulation: A Review of Sample Preparation Techniques, Analysis Methods, Potential Applications, and Future Trends. Sci World J 2014:1–14. https://doi.org/10.1155/2014/735070

    Article  Google Scholar 

  4. Tanaka T, Bulinski A, Castellon J et al (2011) Dielectric properties of XLPE/Sio2 nanocomposites based on CIGRE WG D1.24 cooperative test results. IEEE Trans Dielectr Electr Insul 18:1482–1517. https://doi.org/10.1109/TDEI.2011.6032819

    Article  Google Scholar 

  5. Lau K, Vaughan A, Chen G et al (2014) On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites. IEEE Trans Dielectr Electr Insul 21:340–351. https://doi.org/10.1109/TDEI.2013.004043

    Article  CAS  Google Scholar 

  6. Boggs S (2004) A rational consideration of space charge. IEEE Electr Insul Mag 20:22–27. https://doi.org/10.1109/MEI.2004.1318836

    Article  Google Scholar 

  7. Zimmerling IM, Tsekmes IA, Morshuis PHF et al (2015) Space charge analysis of modified and unmodified XLPE model-cables under different electric fields and temperatures. In: 2015 IEEE conference on electrical insulation and dielectric phenomena (CEIDP). IEEE, pp 134–137. https://doi.org/10.1109/CEIDP.2015.7352121

  8. Wang Y, Xiao K, Wang C et al (2016) Effect of nanoparticle surface modification and filling concentration on space charge characteristics in TiO2/XLPE nanocomposites. J Nanomater 2016:1–10. https://doi.org/10.1155/2016/2840410

    Article  CAS  Google Scholar 

  9. Wang Y, Wang C, Xiao K (2016) Investigation of the electrical properties of XLPE/SiC nanocomposites. Polym Test 50:145–151. https://doi.org/10.1016/j.polymertesting.2016.01.007

    Article  CAS  Google Scholar 

  10. Xiang J, Wang S, Chen P, Li J (2018) Space charge characteristics in XLPE/BN nanocomposites at different temperatures. Proc IEEE Int Conf Prop Appl Dielectr Mater 2018–May:952–955. https://doi.org/10.1109/icpadm.2018.8401195

  11. Densley J (2001) Ageing mechanisms and diagnostics for power cables—an overview. IEEE Electr Insul Mag 17:14–22. https://doi.org/10.1109/57.901613

    Article  Google Scholar 

  12. Paramane A, Kumar KS (2018) Role of micro and nanofillers in electrical tree initiation and propagation in cross-linked polyethylene composites. Trans Electr Electron Mater 19:254–260. https://doi.org/10.1007/s42341-018-0040-x

    Article  Google Scholar 

  13. Chen X, Xu Y, Cao X, Gubanski SM (2015) Electrical treeing behavior at high temperature in XLPE cable insulation samples. IEEE Trans Dielectr Electr Insul 22:2841–2851. https://doi.org/10.1109/TDEI.2015.004784

    Article  Google Scholar 

  14. Bao M, Yin X, He J (2011) Structure characteristics of electrical treeing in XLPE insulation under high frequencies. Phys B Condens Matter 406:2885–2890. https://doi.org/10.1016/j.physb.2011.04.055

    Article  CAS  Google Scholar 

  15. Qi F, Wan D, OuYang X et al (2019) Influence of different XLPE cable defects on the initiation of electric trees. J Electr Eng Technol 14:2625–2632. https://doi.org/10.1007/s42835-019-00296-6

    Article  Google Scholar 

  16. Li C, Yang J, Zhang C et al (2019) The effects of nano-SiO2 on the electrical treeing resistance of XLPE. In: 2019 2nd international conference on electrical materials and power equipment (ICEMPE). IEEE, pp 313–316. https://doi.org/10.1109/ICEMPE.2019.8727248

  17. Zhang C, Li C, Zhao H, Han B (2015) A review on the aging performance of direct current cross-linked polyethylene insulation materials. In: 2015 IEEE 11th international conference on the properties and applications of dielectic material. IEEE, pp 700–703. https://doi.org/10.1109/ICPADM.2015.7295368

  18. Sun K, Chen J, Zhao H et al (2019) Dynamic thermomechanical analysis on water tree resistance of crosslinked polyethylene. Materials (Basel) 12:746. https://doi.org/10.3390/ma12050746

    Article  CAS  Google Scholar 

  19. Chen J, Zhao H, Xu Z et al (2016) Accelerated water tree aging of crosslinked polyethylene with different degrees of crosslinking. Polym Test 56:83–90. https://doi.org/10.1016/j.polymertesting.2016.09.014

    Article  CAS  Google Scholar 

  20. Tao X, Li H, Rao J et al (2018) Trap characteristic and potential trap model of water trees in XLPE. annu rep—conf electr insul dielectr phenomena. CEIDP 2018–Octob:378–381. https://doi.org/10.1109/ceidp.2018.8544867

  21. Nagao M, Watanabe S, Murakami Y et al (2008) Water tree retardation of MgO/LDPE and MgO/XLPE nanocomposites. In: 2008 International symposium on electrical insulating material (ISEIM 2008). IEEE, pp 483–486. https://doi.org/10.1109/ISEIM.2008.4664592

  22. Qingyue Y, Xiufeng L, Peng Z et al (2019) Properties of water tree growing in XLPE and composites. In: 2019 2nd International conference electrical material power equipment. IEEE, pp 409–412. https://doi.org/10.1109/ICEMPE.2019.8727376

  23. Seiler J, Kindersberger J (2014) Insight into the interphase in polymer nanocomposites. IEEE Trans Dielectr Electr Insul 21:537–547. https://doi.org/10.1109/TDEI.2013.004388

    Article  CAS  Google Scholar 

  24. Lewis TJ (1994) Nanometric dielectrics. IEEE Trans Dielectr Electr Insul 1:812–825. https://doi.org/10.1109/94.326653

    Article  CAS  Google Scholar 

  25. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739–753. https://doi.org/10.1109/TDEI.2004.1349779

    Article  CAS  Google Scholar 

  26. Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D Appl Phys 38:202–212. https://doi.org/10.1088/0022-3727/38/2/004

    Article  CAS  Google Scholar 

  27. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12:669–681. https://doi.org/10.1109/TDEI.2005.1511092

    Article  CAS  Google Scholar 

  28. Raetzke S, Kindersberger J (2006) The Effect of Interphase Structures in Nanodielectrics. IEEJ Trans Fundam Mater 126:1044–1049. https://doi.org/10.1541/ieejfms.126.1044

    Article  Google Scholar 

  29. Andritsch T, Kochetov R, Morshuis PHF, Smit JJ (2011) Proposal of the polymer chain alignment model. In: 2011 Annual report conference electrical insulation and dielectric phenomena. IEEE, pp 624–627. https://doi.org/10.1109/CEIDP.2011.6232734

  30. Alhabill FN, Ayoob R, Andritsch T, Vaughan AS (2018) Introducing particle interphase model for describing the electrical behaviour of nanodielectrics. Mater Des 158:62–73. https://doi.org/10.1016/j.matdes.2018.08.018

    Article  CAS  Google Scholar 

  31. Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. JOM 59:53–60. https://doi.org/10.1007/s11837-007-0040-5

    Article  CAS  Google Scholar 

  32. Raetzke S, Kindersberger J (2010) Role of interphase on the resistance to high-voltage arcing, on tracking and erosion of silicone/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 17:607–614. https://doi.org/10.1109/TDEI.2010.5448118

    Article  CAS  Google Scholar 

  33. Calebrese C, Hui L, Schadler L, Nelson J (2011) A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans Dielectr Electr Insul 18:938–945. https://doi.org/10.1109/TDEI.2011.5976079

    Article  CAS  Google Scholar 

  34. Paramane AS, Kumar KS (2016) A review on nanocomposite based electrical insulations. Trans Electr Electron Mater 17:239–251. https://doi.org/10.4313/TEEM.2016.17.5.239

    Article  Google Scholar 

  35. Paramane AS, Kannaiah SK (2016) Superiority of partial discharge characteristics of cross-linked polyethylene nanocomposites over microcomposites for electrical insulation application. Micro Nano Lett 11:844–847. https://doi.org/10.1049/mnl.2016.0496

    Article  CAS  Google Scholar 

  36. Niu Y, Wang H (2019) Dielectric nanomaterials for power energy storage: surface modification and characterization. ACS Appl Nano Mater 2:627–642. https://doi.org/10.1021/acsanm.8b01846

    Article  CAS  Google Scholar 

  37. Plueddemann EP (1991) Chemistry of silane coupling agents. Silane coupling agents. Springer, US, Boston, MA, pp 31–54. https://doi.org/10.1007/978-1-4899-2070-6_2

    Chapter  Google Scholar 

  38. Mostofi Sarkari N, Mohseni M, Ebrahimi M (2019) Investigating the crosslinking effects on surface characteristics of vinyltrimethoxysilane-grafted moisture-cured low-density polyethylene/ethylene vinyl acetate blend. J Appl Polym Sci 136:47147. https://doi.org/10.1002/app.47147

    Article  CAS  Google Scholar 

  39. Pape PG (2017) Adhesion promoters: silane coupling agents. In: Applied plastic engineering handbook, 2nd edn. Elsevier, pp 555–572. https://doi.org/10.1016/B978-0-323-39040-8.00026-2

  40. Thomas S, Jose JP (2017) Cross-linked polyethylene nanocomposites for dielectric applications. Adv Compos Mater Prop Appl. https://doi.org/10.1515/9783110574432-012

    Article  Google Scholar 

  41. Huang X, Liu F, Jiang P (2010) Effect of nanoparticle surface treatment on morphology, electrical and water treeing behavior of LLDPE composites. IEEE Trans Dielectr Electr Insul 17:1697–1704. https://doi.org/10.1109/TDEI.2010.5658219

    Article  CAS  Google Scholar 

  42. Liu D, Hoang AT, Pourrahimi AM et al (2017) Influence of nanoparticle surface coating on electrical conductivity of LDPE/Al < inf > 2</inf >]] > O<![CDATA[< inf > 3</inf > nanocomposites for HVDC cable insulations. IEEE Trans Dielectr Electr Insul 24:1396–1404. https://doi.org/10.1109/TDEI.2017.006310

    Article  CAS  Google Scholar 

  43. Liu D, Pourrahimi AM, Olsson RT et al (2015) Influence of nanoparticle surface treatment on particle dispersion and interfacial adhesion in low-density polyethylene/aluminium oxide nanocomposites. Eur Polym J 66:67–77. https://doi.org/10.1016/j.eurpolymj.2015.01.046

    Article  CAS  Google Scholar 

  44. Liu D, Pallon LKH, Pourrahimi AM et al (2017) Cavitation in strained polyethylene/aluminium oxide nanocomposites. Eur Polym J 87:255–265. https://doi.org/10.1016/j.eurpolymj.2016.12.021

    Article  CAS  Google Scholar 

  45. Wang W, Li S (2019) Improvement of dielectric breakdown performance by surface modification in polyethylene/TiO2 nanocomposites. Materials (Basel) 12:3346. https://doi.org/10.3390/ma12203346

    Article  CAS  Google Scholar 

  46. Ashish Sharad P, Kumar KS (2017) Application of surface-modified XLPE nanocomposites for electrical insulation partial discharge and morphological study. Nanocomposites 3:30–41. https://doi.org/10.1080/20550324.2017.1325987

    Article  CAS  Google Scholar 

  47. Palakattukunnel ST, Thomas S, Sreekumar PA, Bandyopadhyay S (2011) Poly(ethylene-co-vinyl acetate)/calcium phosphate nanocomposites: contact angle, diffusion and gas permeability studies. J Polym Res 18:1277–1285. https://doi.org/10.1007/s10965-010-9530-1

    Article  CAS  Google Scholar 

  48. Jose JP, Abraham J, Maria HJ et al (2016) Contact angle studies in XLPE hybrid nanocomposites with inorganic nanofillers. Macromol Symp 366:66–78. https://doi.org/10.1002/masy.201650048

    Article  CAS  Google Scholar 

  49. Zhang L, Zhou Y, Cui X et al (2014) Effect of nanoparticle surface modification on breakdown and space charge behavior of XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21:1554–1564. https://doi.org/10.1109/TDEI.2014.004361

    Article  CAS  Google Scholar 

  50. Zhang L, Zhou Y, Huang M et al (2014) Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites. IEEE Trans Dielectr Electr Insul 21:424–433. https://doi.org/10.1109/TDEI.2013.004145

    Article  CAS  Google Scholar 

  51. Donghe D, Xiufeng L, Jin S et al (2017) The influence of surface modifier on structural morphology and dielectric property of XLPE/SiO < inf > 2</inf > Nanocomposites. In: 2017 1st International conference electrical material power equipment. IEEE, pp 432–435. https://doi.org/10.1109/ICEMPE.2017.7982120

  52. Zhang L, Khani MM, Krentz TM et al (2017) Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO2 nanoparticles. Appl Phys Lett. https://doi.org/10.1063/14979107

    Article  Google Scholar 

  53. Zhang C, Chang J, Zhang H et al (2019) Improved direct current electrical properties of crosslinked polyethylene modified with the polar group compound. Polymers (Basel) 11:1624. https://doi.org/10.3390/polym11101624

    Article  CAS  Google Scholar 

  54. Teyssedre G, Laurent C (2005) Charge transport modeling in insulating polymers: from molecular to macroscopic scale. IEEE Trans Dielectr Electr Insul 12:857–875. https://doi.org/10.1109/TDEI.2005.1522182

    Article  CAS  Google Scholar 

  55. Zhang C, Zhang H, Li C et al (2018) Crosslinked polyethylene/polypyrrole nanocomposites with improved direct current electrical characteristics. Polym Test 71:223–230. https://doi.org/10.1016/j.polymertesting.2018.09.020

    Article  CAS  Google Scholar 

  56. Jose JP, Thomas S (2014) Alumina–clay nanoscale hybrid filler assembling in cross-linked polyethylene based nanocomposites: mechanics and thermal properties. Phys Chem Chem Phys 16:14730–14740. https://doi.org/10.1039/C4CP01532K

    Article  CAS  Google Scholar 

  57. Jose JP, Thomas S (2014) XLPE based Al2O3—clay binary and ternary hybrid nanocomposites: self-assembly of nanoscale hybrid fillers, polymer chain confinement and transport characteristics. Phys Chem Chem Phys 16:20190–20201. https://doi.org/10.1039/C4CP03403A

    Article  CAS  Google Scholar 

  58. Hosier IL, Praeger M, Vaughan AS, Swingler SG (2017) The effects of water on the dielectric properties of aluminum-based nanocomposites. IEEE Trans Nanotechnol 16:667–676. https://doi.org/10.1109/TNANO.2017.2703982

    Article  CAS  Google Scholar 

  59. Hosier IL, Praeger M, Vaughan AS, Swingler SG (2017) The effects of water on the dielectric properties of silicon-based nanocomposites. IEEE Trans Nanotechnol 16:169–179. https://doi.org/10.1109/TNANO.2016.2642819

    Article  CAS  Google Scholar 

  60. Zou C, Fothergill J, Rowe S (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15:106–117. https://doi.org/10.1109/T-DEI.2008.4446741

    Article  CAS  Google Scholar 

  61. Pourrahimi AM, Olsson RT, Hedenqvist MS (2018) The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Adv Mater 30:1703624. https://doi.org/10.1002/adma.201703624

    Article  CAS  Google Scholar 

  62. Fabiani D, Montanari G, Testa L (2010) Effect of aspect ratio and water contamination on the electric properties of nanostructured insulating materials. IEEE Trans Dielectr Electr Insul 17:221–230. https://doi.org/10.1109/TDEI.2010.5412021

    Article  CAS  Google Scholar 

  63. Nilsson F, Karlsson M, Pallon L et al (2017) Influence of water uptake on the electrical DC-conductivity of insulating LDPE/MgO nanocomposites. Compos Sci Technol 152:11–19. https://doi.org/10.1016/j.compscitech.2017.09.009

    Article  CAS  Google Scholar 

  64. Pourrahimi AM, Pallon LKH, Liu D et al (2016) Polyethylene nanocomposites for the next generation of ultralow-transmission-loss HVDC cables: insulation containing moisture-resistant MgO nanoparticles. ACS Appl Mater Interfaces 8:14824–14835. https://doi.org/10.1021/acsami.6b04188

    Article  CAS  Google Scholar 

  65. Lau KY, Zafrullah SNRM, Ismail IZ, Ching KY (2018) Effects of water on breakdown characteristics of polyethylene composites. J Electrostat 96:119–127. https://doi.org/10.1016/j.elstat.2018.10.011

    Article  CAS  Google Scholar 

  66. Yang J, Wang X, Zhao H et al (2014) Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite. IEEE Trans Dielectr Electr Insul 21:1957–1964. https://doi.org/10.1109/TDEI.2014.004334

    Article  CAS  Google Scholar 

  67. Wang Y, Qiang D, Alhabill FNF et al (2018) Influence of moisture absorption on electrical properties and charge dynamics of polyethylene silica-based nanocomposites. J Phys D Appl Phys 51:425302. https://doi.org/10.1088/1361-6463/aadb7b

    Article  CAS  Google Scholar 

  68. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A Physicochem Eng Asp 173:1–38. https://doi.org/10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  69. Hui L, Schadler LS, Nelson JK (2013) The influence of moisture on the electrical properties of crosslinked polyethylene/silica nanocomposites. IEEE Trans Dielectr Electr Insul 20:641–653. https://doi.org/10.1109/TDEI.2013.6508768

    Article  CAS  Google Scholar 

  70. Hui L, Nelson JK, Schadler LS (2010) The influence of moisture on the electrical performance of XLPE/silica nanocomposites. In: 2010 10th IEEE International conference on solid dialectical IEEE, pp 1–4. https://doi.org/10.1109/ICSD.2010.5568040

  71. Nilsson S, Hjertberg T, Smedberg A (2010) Structural effects on thermal properties and morphology in XLPE. Eur Polym J 46:1759–1769. https://doi.org/10.1016/j.eurpolymj.2010.05.003

    Article  CAS  Google Scholar 

  72. Zhang X, Yang H, Song Y, Zheng Q (2012) Influence of crosslinking on physical properties of low density polyethylene. Chinese J Polym Sci 30:837–844. https://doi.org/10.1007/s10118-012-1194-3

    Article  CAS  Google Scholar 

  73. Pleşa I, Noţingher P, Schlögl S et al (2016) Properties of polymer composites used in high-voltage applications. Polymers (Basel) 8:173. https://doi.org/10.3390/polym8050173

    Article  CAS  Google Scholar 

  74. Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interf Sci 17:132–140. https://doi.org/10.1016/j.cocis.2012.01.004

    Article  CAS  Google Scholar 

  75. Wang W, Min D, Li S (2016) Understanding the conduction and breakdown properties of polyethylene nanodielectrics: effect of deep traps. IEEE Trans Dielectr Electr Insul 23:564–572. https://doi.org/10.1109/TDEI.2015.004823

    Article  Google Scholar 

  76. Jouault N, Moll JF, Meng D et al (2013) Bound polymer layer in nanocomposites. ACS Macro Lett 2:371–374. https://doi.org/10.1021/mz300646a

    Article  CAS  Google Scholar 

  77. Pourrahimi AM, Hoang TA, Liu D et al (2016) Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: a novel approach toward ultralow electrical conductivity insulations. Adv Mater 28:8651–8657. https://doi.org/10.1002/adma.201603291

    Article  CAS  Google Scholar 

  78. Jose JP, Chazeau L, Cavaillé J-Y et al (2014) Nucleation and nonisothermal crystallization kinetics in cross-linked polyethylene/zinc oxide nanocomposites. RSC Adv 4:31643–31651. https://doi.org/10.1039/C4RA03731F

    Article  CAS  Google Scholar 

  79. Andrews T, Hampton RN, Smedberg A et al (2006) The role of degassing in XLPE power cable manufacture. IEEE Electr Insul Mag 22:5–16. https://doi.org/10.1109/MEI.2006.253416

    Article  Google Scholar 

  80. Gao Y, Huang X, Min D et al (2019) Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: toward new generation of high voltage direct current cable insulation. ACS Sustain Chem Eng 7:513–525. https://doi.org/10.1021/acssuschemeng.8b04070

    Article  CAS  Google Scholar 

  81. Xu Z, Zhou F, Zhimin Y et al (2016) Effect of dicumyl peroxide on space charge accumulation characteristics of cross-linked polyethylene. In: 2016 IEEE International conference dielectric. IEEE, pp 196–199. https://doi.org/10.1109/ICD.2016.7547578

  82. Meng P, Zhou Y, Yuan C et al (2019) Comparisons of different polypropylene copolymers as potential recyclable HVDC cable insulation materials. IEEE Trans Dielectr Electr Insul 26:674–680. https://doi.org/10.1109/TDEI.2019.8726011

    Article  CAS  Google Scholar 

  83. Wu J, Wu ZL, Yang H, Zheng Q (2014) Crosslinking of low density polyethylene with octavinyl polyhedral oligomeric silsesquioxane as the crosslinker. RSC Adv 4:44030–44038. https://doi.org/10.1039/C4RA04886E

    Article  CAS  Google Scholar 

  84. Morici E, Di Bartolo A, Arrigo R, Dintcheva NT (2016) Double bond-functionalized POSS: dispersion and crosslinking in polyethylene-based hybrid obtained by reactive processing. Polym Bull 73:3385–3400. https://doi.org/10.1007/s00289-016-1662-y

    Article  CAS  Google Scholar 

  85. Morici E, Di Bartolo A, Arrigo R, Dintcheva NT (2018) POSS grafting on polyethylene and maleic anhydride-grafted polyethylene by one-step reactive melt mixing. Adv Polym Technol 37:349–357. https://doi.org/10.1002/adv.21673

    Article  CAS  Google Scholar 

  86. Huang X, Xie L, Jiang P et al (2009) Morphology studies and ac electrical property of low density polyethylene/octavinyl polyhedral oligomeric silsesquioxane composite dielectrics. Eur Polym J 45:2172–2183. https://doi.org/10.1016/j.eurpolymj.2009.05.019

    Article  CAS  Google Scholar 

  87. Bhutta MS, Yang L, Ma Z et al (2018) Influence of polyhedral oligomeric silsesquioxane (POSS) on space charge behavior and trap levels of XLPE/POSS nanocomposite. In: 2018 IEEE 2nd International conference dielectric. IEEE, pp 1–4. https://doi.org/10.1109/ICD.2018.8514731

  88. Mauri M, Peterson A, Senol A et al (2018) Byproduct-free curing of a highly insulating polyethylene copolymer blend: an alternative to peroxide crosslinking. J Mater Chem C 6:11292–11302. https://doi.org/10.1039/C8TC04494E

    Article  CAS  Google Scholar 

  89. Mauri M, Hofmann AI, Gómez-Heincke D et al (2020) Click chemistry-type crosslinking of a low-conductivity polyethylene copolymer ternary blend for power cable insulation. Polym Int 69:404–412. https://doi.org/10.1002/pi.5966

    Article  CAS  Google Scholar 

  90. Mauri M, Svenningsson L, Hjertberg T et al (2018) Orange is the new white: rapid curing of an ethylene-glycidyl methacrylate copolymer with a Ti-bisphenolate type catalyst. Polym Chem 9:1710–1718. https://doi.org/10.1039/C7PY01840A

    Article  CAS  Google Scholar 

  91. Mauri M, Tran N, Prieto O et al (2017) Crosslinking of an ethylene-glycidyl methacrylate copolymer with amine click chemistry. Polymer (Guildf) 111:27–35. https://doi.org/10.1016/j.polymer.2017.01.010

    Article  CAS  Google Scholar 

  92. Diao J, Huang X, Jia Q et al (2017) Thermoplastic isotactic polypropylene/ethylene-octene polyolefin copolymer nanocomposite for recyclable HVDC cable insulation. IEEE Trans Dielectr Electr Insul 24:1416–1429. https://doi.org/10.1109/TDEI.2017.006208

    Article  CAS  Google Scholar 

  93. Li L, Zhong L, Zhang K et al (2018) Temperature dependence of mechanical, electrical properties and crystal structure of polyethylene blends for cable insulation. Materials (Basel) 11:1922. https://doi.org/10.3390/ma11101922

    Article  CAS  Google Scholar 

  94. Mostofi Sarkari N, Mohseni M, Ebrahimi M (2021) Examining impact of vapor-induced crosslinking duration on dynamic mechanical and static mechanical characteristics of silane-water crosslinked polyethylene compound. Polym Test 93:106933. https://doi.org/10.1016/j.polymertesting.2020.106933

    Article  CAS  Google Scholar 

  95. Hosier IL, Vaughan AS, Pye A, Stevens GC (2019) High performance polymer blend systems for HVDC applications. IEEE Trans Dielectr Electr Insul 26:1197–1203. https://doi.org/10.1109/TDEI.2019.007954

    Article  CAS  Google Scholar 

  96. Huang X, Fan Y, Zhang J, Jiang P (2017) Polypropylene based thermoplastic polymers for potential recyclable HVDC cable insulation applications. IEEE Trans Dielectr Electr Insul 24:1446–1456. https://doi.org/10.1109/TDEI.2017.006230

    Article  CAS  Google Scholar 

  97. Okajima I, Sako T (2014) Energy conversion of biomass and recycling of waste plastics using supercritical fluid, subcritical fluid and high-pressure superheated steam. In: Supercritical fluid technology for energy environmental application. Elsevier, pp 249–267. https://doi.org/10.1016/B978-0-444-62696-7.00013-7

  98. Goto M (2009) Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids 47:500–507. https://doi.org/10.1016/j.supflu.2008.10.011

    Article  CAS  Google Scholar 

  99. Goto T, Yamazaki T, Sugeta T et al (2003) Recycling of silane cross-linked polyethylene for insulation of cables by supercritical alcohol. Proc IEEE Int Conf Prop Appl Dielectr Mater 3:1218–1221. https://doi.org/10.1109/icpadm.2003.1218644

    Article  CAS  Google Scholar 

  100. Ashihara S, Goto T, Yamazaki T et al (2008) Recycling of insulation of 600 V XLPE cable using supercritical alcohol. In: 2008 International Symposium on electric insulating materials (ISEIM 2008). IEEE, pp 522–525. https://doi.org/10.1109/ISEIM.2008.4664473

  101. Goto T, Ashihara S, Yamazaki T et al (2011) Continuous process for recycling silane cross-linked polyethylene using supercritical alcohol and extruders. Ind Eng Chem Res 50:5661–5666. https://doi.org/10.1021/ie101772x

    Article  CAS  Google Scholar 

  102. Goto T, Ashihara S, Kato M et al (2012) Use of single-screw extruder for continuous silane cross-linked polyethylene recycling process using supercritical alcohol. Ind Eng Chem Res 51:6967–6971. https://doi.org/10.1021/ie202303y

    Article  CAS  Google Scholar 

  103. Baek BK, La YH, Lee AS et al (2016) Decrosslinking reaction kinetics of silane-crosslinked polyethylene in sub- and supercritical fluids. Polym Degrad Stab 130:103–108. https://doi.org/10.1016/j.polymdegradstab.2016.05.025

    Article  CAS  Google Scholar 

  104. Baek BK, La YH, Na WJ et al (2016) A kinetic study on the supercritical decrosslinking reaction of silane-crosslinked polyethylene in a continuous process. Polym Degrad Stab 126:75–80. https://doi.org/10.1016/j.polymdegradstab.2016.01.019

    Article  CAS  Google Scholar 

  105. Lee H, Jeong JH, Hong G et al (2013) Effect of solvents on de-cross-linking of cross-linked polyethylene under subcritical and supercritical conditions. Ind Eng Chem Res 52:6633–6638. https://doi.org/10.1021/ie4006194

    Article  CAS  Google Scholar 

  106. Baek BK, Shin JW, Jung JY et al (2015) Continuous supercritical decrosslinking extrusion process for recycling of crosslinked polyethylene waste. J Appl Polym Sci 132. https://doi.org/10.1002/app.41442

  107. Qudaih R, Janajreh I, Vukusic SE (2011) Recycling of cross-linked polyethylene cable waste via particulate infusion. In: Seliger G, Khraisheh MMK, Jawahir IS (eds) Advance Sustainable Manufacture. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 233–239. https://doi.org/10.1007/978-3-642-20183-7_34

    Chapter  Google Scholar 

  108. Lindqvist K, Andersson M, Boss A, Oxfall H (2019) Thermal and mechanical properties of blends containing PP and recycled XLPE cable waste. J Polym Environ 27:386–394. https://doi.org/10.1007/s10924-018-1357-6

    Article  CAS  Google Scholar 

  109. Navratil J, Manas M, Mizera A et al (2015) Recycling of irradiated high-density polyethylene. Radiat Phys Chem 106:68–72. https://doi.org/10.1016/j.radphyschem.2014.06.025

    Article  CAS  Google Scholar 

  110. Manas D, Manas M, Mizera A et al (2018) The high density polyethylene composite with recycled radiation cross-linked filler of rHDPEx. Polymers (Basel) 10:1361. https://doi.org/10.3390/polym10121361

    Article  CAS  Google Scholar 

  111. Zéhil G-P, Assaad JJ (2019) Feasibility of concrete mixtures containing cross-linked polyethylene waste materials. Constr Build Mater 226:1–10. https://doi.org/10.1016/j.conbuildmat.2019.07.285

    Article  CAS  Google Scholar 

  112. Singh P, Déparrois N, Burra KG et al (2019) Energy recovery from cross-linked polyethylene wastes using pyrolysis and CO2 assisted gasification. Appl Energy 254:113722. https://doi.org/10.1016/j.apenergy.2019.113722

    Article  CAS  Google Scholar 

  113. Sun F, Bai S, Wang Q (2019) Structures and properties of waste silicone cross-linked polyethylene de-cross-linked selectively by solid-state shear mechanochemical technology. J Vinyl Addit Technol 25:149–158. https://doi.org/10.1002/vnl.21636

    Article  CAS  Google Scholar 

  114. Santos JN, Jayaraman R (2019) Recycling of crosslinked high-density polyethylene through compression molding. J Appl Polym Sci 136:48145. https://doi.org/10.1002/app.48145

    Article  CAS  Google Scholar 

  115. Xie Y, Zhao Y, Liu G et al (2019) Annealing effects on XLPE insulation of retired high-voltage cable. IEEE Access 7:104344–104353. https://doi.org/10.1109/ACCESS.2019.2927882

    Article  Google Scholar 

  116. Xie Y, Liu G, Zhao Y et al (2019) Rejuvenation of retired power cables by heat treatment. IEEE Trans Dielectr Electr Insul 26:668–670. https://doi.org/10.1109/TDEI.2018.007783

    Article  CAS  Google Scholar 

  117. Ouyang Y, Mauri M, Pourrahimi AM et al (2020) Recyclable polyethylene insulation via reactive compounding with a maleic anhydride-grafted polypropylene. ACS Appl Polym Mater 2:2389–2396. https://doi.org/10.1021/acsapm.0c00320

    Article  CAS  Google Scholar 

  118. IEC 60227-2 Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V—test methods

    Google Scholar 

  119. Mostofi Sarkari N, Darvish F, Mohseni M et al (2019) Surface characterization of an organosilane-grafted moisture-crosslinked polyethylene compound treated by air atmospheric pressure non-equilibrium gliding arc plasma. Appl Surf Sci 490:436–450. https://doi.org/10.1016/j.apsusc.2019.06.007

    Article  CAS  Google Scholar 

  120. Mostofi Sarkari N, Doğan Ö, Bat E et al (2019) Assessing effects of (3-aminopropyl)trimethoxysilane self-assembled layers on surface characteristics of organosilane-grafted moisture-crosslinked polyethylene substrate: a comparative study between chemical vapor deposition and plasma-facilitated in situ. Appl Surf Sci 497:143751. https://doi.org/10.1016/j.apsusc.2019.143751

    Article  CAS  Google Scholar 

  121. Mostofi Sarkari N, Doğan Ö, Bat E et al (2020) Tethering vapor-phase deposited GLYMO coupling molecules to silane-crosslinked polyethylene surface via plasma grafting approaches. Appl Surf Sci 513:145846. https://doi.org/10.1016/j.apsusc.2020.145846

    Article  CAS  Google Scholar 

  122. Zhao AX, Chen X, Le Chen S et al (2019) Surface modification of XLPE films by CF 4 DBD for dielectric properties. AIP Adv. https://doi.org/10.1063/1.5078489

    Google Scholar 

  123. Thomas J, Joseph B, Jose JP et al (2019) Recent advances in cross-linked polyethylene-based nanocomposites for high voltage engineering applications: a critical review. Ind Eng Chem Res 58:20863–20879. https://doi.org/10.1021/acs.iecr.9b02172

    Article  CAS  Google Scholar 

  124. Kim C, Jiang P, Liu F et al (2019) Investigation on dielectric breakdown behavior of thermally aged cross-linked polyethylene cable insulation. Polym Test 80:106045. https://doi.org/10.1016/j.polymertesting.2019.106045

    Article  CAS  Google Scholar 

  125. Ouyang B, Li H, Zhang X et al (2017) The role of micro-structure changes on space charge distribution of XLPE during thermo-oxidative ageing. IEEE Trans Dielectr Electr Insul 24:3849–3859. https://doi.org/10.1109/TDEI.2017.006523

    Article  CAS  Google Scholar 

  126. He D, Gu J, Wang W et al (2017) Research on mechanical and dielectric properties of XLPE cable under accelerated electrical-thermal aging. Polym Adv Technol 28:1020–1029. https://doi.org/10.1002/pat.3901

    Article  CAS  Google Scholar 

  127. Hedir A, Moudoud M, Lamrous O et al (2019) Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation. J Appl Polym Sci 48575:48575. https://doi.org/10.1002/app.48575

    Article  CAS  Google Scholar 

  128. Shao Z, Byler MI, Liu S et al (2018) Dielectric response of cross-linked polyethylene (XLPE) cable insulation material to radiation and thermal aging. In: 2018 IEEE 2nd international conference dielectric, pp 1–4. https://doi.org/10.1109/icd.2018.8514664

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohseni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostofi Sarkari, N., Mohseni, M., Ebrahimi, M. (2021). Risks and Limitations Associated with XLPE Nanocomposites and Blends. In: Thomas, J., Thomas, S., Ahmad, Z. (eds) Crosslinkable Polyethylene Based Blends and Nanocomposites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-16-0486-7_14

Download citation

Publish with us

Policies and ethics