Skip to main content

Carbon Nanomaterials for Emerging Electronic Devices and Sensors

  • Chapter
  • First Online:
Carbon Nanomaterial Electronics: Devices and Applications

Part of the book series: Advances in Sustainability Science and Technology ((ASST))

  • 1170 Accesses

Abstract

Over the last two decades, carbon nanomaterials including two-dimensional graphene, one-dimensional carbon nanotubes (CNTs), and zero-dimensional carbon quantum dots, fullerenes have gained tremendous attention from researchers due to their unique optical, electronic, mechanical, chemical, and thermal properties. Furthermore, to enhance the properties of pristine carbon nanomaterials, their hybrid materials have been synthesized. Even though tremendous advancement in carbon nanomaterials-based electronic devices and sensors has been achieved, a few challenges need to be addressed before the commercialization of carbon nanomaterials-based devices. Apart from the improvements, the device to device variations, and extrinsic factors like dielectric layers, metal contact resistance remain an issue. Strategies such as chemically tuning and enhancing the properties of carbon nanomaterials are important for the further improvement of carbon nanomaterial-based device performance. This chapter focuses on understanding the basic electronic properties of graphene, CNT. and carbon quantum dots/fullerenes and their applications in electronic devices (field-effect transistors, diodes, etc.), optoelectronics, and various chemical and physical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, McKay K (1988) The formation of quasi-icosahedral spiral shell carbon particles. Nature 331:328–331

    Article  Google Scholar 

  2. Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709

    Article  Google Scholar 

  3. Wang X, Hofmann O, Das R, Barrett EM, DeMello AJ, DeMello JC, Bradley DDC (2007) Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection. Lab Chip 7:58–63

    Article  Google Scholar 

  4. Deibel C, Dyakonov V (2010) Polymer–fullerene bulk heterojunction solar cells. Mater Today 73:462–470

    Google Scholar 

  5. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM (2012) C60 thin film transistors. 121:1–4

    Google Scholar 

  6. Monthioux M, Kuznetsov VL (2006) Who should be given the credit for the discovery of carbon nanotubes? Carbon N Y 44:1621–1623

    Article  Google Scholar 

  7. Radushkevich LV, Lukyanovich VM (1952) The structure of carbon forming in thermal decomposition of carbon monoxide on an iron catalyst. Russ J Phys Chem 26:88–95

    Google Scholar 

  8. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  9. Inami N, Mohamed MA, Shikoh E, Fujiwara A (2007) Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method. Sci Technol Adv Mater 8:292–295. https://doi.org/10.1016/j.stam.2007.02.009

    Article  Google Scholar 

  10. Eftekhari A, Jafarkhani P, Moztarzadeh F (2006) High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition. Carbon N Y 44:1343–1345

    Article  Google Scholar 

  11. Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE (1995) Self-assembly of tubular fullerenes. J Phys Chem 99:10694–10697

    Article  Google Scholar 

  12. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    Article  Google Scholar 

  13. Dai H (2002) Carbon nanotubes: opportunities and challenges. Surf Sci 500:218–241

    Article  Google Scholar 

  14. Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y (2004) Smallest carbon nanotube is 3Ã… in diameter. Phys Rev Lett 92:125502

    Article  Google Scholar 

  15. Wen Q, Zhang R, Qian W, Wang Y, Tan P, Nie J, Wei F (2010) Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80–90 μm/s. Chem Mater 22:1294–1296

    Article  Google Scholar 

  16. Dresselhaus EMS, Dresselhaus G, Avouris P (2003) Carbon nanotubes:synthesis, structure, properties, and applications. vol 80. Springer Science & Business Media

    Google Scholar 

  17. Reich S, Christian Thomsen JM (2004) Carbon nanotubes: basic concepts and physical properties

    Google Scholar 

  18. Ivchenko EL, Spivak B (2002) Chirality effects in carbon nanotubes. Phys Rev B 66:155404

    Article  Google Scholar 

  19. Nakayama Y, Akita S (2001) Field-emission device with carbon nanotubes for a flat panel display. Synth Met 117:207–210

    Article  Google Scholar 

  20. Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA (2001) Gas sensing characteristics of multi-wall carbon nanotubes. Sensors Actuators B Chem 81:32–41

    Article  Google Scholar 

  21. Jiang W, Xiao S, Zhang H, Dong Y, Li X (2007) Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array. Sci China Ser E Technol Sci 50:510–515

    Article  Google Scholar 

  22. Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem Phys Lett 307:153–157

    Article  Google Scholar 

  23. Saha MS, Li R, Sun X, Ye S (2009) 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper. Electrochem Commun 11:438–441

    Article  Google Scholar 

  24. Sun X, Li R, Villers D, Dodelet JP, Désilets S (2003) Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings. Chem Phys Lett 379:99–104

    Article  Google Scholar 

  25. Ghasempour R, Narei H (2018) 1 - CNT Basics and characteristics. In: Rafiee RBT-CN-RP (ed) Micro and Nano Technologies. Elsevier, pp 1–24

    Google Scholar 

  26. Mashkoor F, Nasar A, Inamuddin, (2020) Carbon nanotube-based adsorbents for the removal of dyes from waters: a review. Environ Chem Lett 18:605–629

    Article  Google Scholar 

  27. Messina G SS (2006) Carbon: the future material for advanced technology applications, p 530. Springer-Verlag Berlin Heidelberg

    Google Scholar 

  28. Morgan P (2005) Carbon fibers and their composites. Taylor & Francis Group, LLC, p P1200

    Book  Google Scholar 

  29. Cheng H-Y, Zhu Y-A, Sui Z-J, Zhou X-G, Chen D (2012) Modeling of fishbone-type carbon nanofibers with cone-helix structures. Carbon N Y 50:4359–4372

    Article  Google Scholar 

  30. Geim AK, Kim P (2008) Carbon wonderland. Sci Am 298:90–97

    Article  Google Scholar 

  31. Novoselov KS, Geim AK, Morozov S V, Jiang D, Zhang Y, Dubonos SV, Grigorieva I V, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science (80- ) 306:666–669

    Google Scholar 

  32. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  Google Scholar 

  33. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  Google Scholar 

  34. Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620

    Article  Google Scholar 

  35. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  36. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (80- )321:385–388

    Google Scholar 

  37. Kuzmenko AB, van Heumen E, Carbone F, van der Marel D (2008) Universal optical conductance of graphite. Phys Rev Lett 100:117401

    Article  Google Scholar 

  38. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  39. Liu S, Chevali VS, Xu Z, Hui D, Wang H (2017) A review of extending performance of epoxy resins using carbon nanomaterials. Compos Part B Eng 136:197–214

    Article  Google Scholar 

  40. Rizvi SB, Ghaderi S, Keshtgar M, Seifalian AM (2010) Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 1:5161

    Article  Google Scholar 

  41. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  Google Scholar 

  42. Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC (2005) Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 329:1173–1177

    Article  Google Scholar 

  43. Rizvi SB, Ghaderi S, Keshtgar M (2010) Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 1(10):3402

    Google Scholar 

  44. Baker SN, Baker GA (2010) Luminescent carbon nanodots : emergent nanolights angewandte. Angew Chem Int Ed 49:6726–6744

    Article  Google Scholar 

  45. Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du X-W (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488

    Article  Google Scholar 

  46. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551

    Article  Google Scholar 

  47. Qiao Z-A, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46:8812–8814

    Article  Google Scholar 

  48. Zhou J, Booker C, Li R, Zhou X, Sham T-K, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745

    Article  Google Scholar 

  49. Bao L, Zhang Z-L, Tian Z-Q, Zhang L, Liu C, Lin Y, Qi B, Pang D-W (2011) Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv Mater 23:5801–5806

    Article  Google Scholar 

  50. Sahatiya P, Jones SS, Badhulika S (2018) 2D MoS2–carbon quantum dot hybrid based large area, flexible UV–vis–NIR photodetector on paper substrate. Appl Mater Today 10:106–114

    Article  Google Scholar 

  51. Koduvayur Ganeshan S, Selamneni V, Sahatiya P (2020) Water dissolvable MoS2 quantum dots/PVA film as an active material for destructible memristors. New J Chem. https://doi.org/10.1039/D0NJ02053B

    Article  Google Scholar 

  52. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860

    Article  Google Scholar 

  53. Avouris P, Chen Z, Perebeinos V (2007) Carbon-Based Electronics. Nat Nanotech 2:605–615

    Article  Google Scholar 

  54. Ando T, Nakanishi T (1998) Impurity scattering in carbon nanotubes–absence of back scattering. J Phys Soc Japan 67:1704–1713

    Article  Google Scholar 

  55. Zhou X, Park J-Y, Huang S, Liu J, McEuen PL (2005) Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett 95:146805

    Article  Google Scholar 

  56. Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128–3131

    Article  Google Scholar 

  57. Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39

    Article  Google Scholar 

  58. Léonard F, Tersoff J (2000) Role of fermi-level pinning in nanotube schottky diodes. Phys Rev Lett 84:4693–4696

    Article  Google Scholar 

  59. Chen Z, Appenzeller J, Knoch J, Lin Y (2005) The role of metal−nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett 5:1–6

    Article  Google Scholar 

  60. Sangwan VK, Ballarotto VW, Fuhrer MS, Williams ED, Sangwan VK, Ballarotto VW, Fuhrer MS, Williams ED (2014) Facile Fabrication of Suspended As-Grown Carbon Nanotube Devices. 93:113112

    Google Scholar 

  61. Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM, Gignac L, Lundstrom MS, Haensch W (2012) Sub-10 nm carbon nanotube transistor. Nano Lett 12:758–762

    Article  Google Scholar 

  62. Hickey BM, Oceanogr P, Emery WJ, Hamilton K, Res JG, Simpson JJ, Lett GR, Ely LL, Enzel Y, Cayan DR, Clim J, Prahl FG, Muehlhausen LA, Zahnle DL, Postma HWC, Teepen T, Yao Z, Grifoni M (2001) Carbon nanotube single-electron transistors at room temperature. Science (80-) 293:76–79

    Google Scholar 

  63. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  Google Scholar 

  64. Bockrath M, Cobden DH, Lu J (1999) Luttinger-liquid behaviour in carbon nanotubes. Nature 397:598–601

    Article  Google Scholar 

  65. Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:256805

    Article  Google Scholar 

  66. Snow ES, Novak JP, Campbell PM, Park D, Snow ES, Novak JP, Campbell PM, Park D (2003) Random networks of carbon nanotubes as an electronic material. Appl Phys Lett 82:2145

    Article  Google Scholar 

  67. Topinka MA, Rowell MW, Goldhaber-gordon D, Mcgehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9:1866–1871

    Article  Google Scholar 

  68. Collins PG, Arnold MS, Avouris P (2001) Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science (80- ) 292:706–709

    Google Scholar 

  69. Separated UH, Wang C, Zhang J, Zhou C (2010) Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 4:7123–7132

    Article  Google Scholar 

  70. Thin-film CN, Sangwan VK, Ortiz RP, Alaboson JMP, Emery JD, Bedzyk MJ, Lauhon LJ, Marks TJ, Hersam MC (2012) Fundamental performance limits of transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–7488

    Article  Google Scholar 

  71. Roberts ME, Lemieux MC, Sokolov AN, Bao Z (2009) Self-sorted nanotube networks on polymer dielectrics for low-voltage thin-film transistors. Nano Lett 9:2526–2531

    Article  Google Scholar 

  72. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  Google Scholar 

  73. Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944

    Article  Google Scholar 

  74. Steiner M, Engel M, Lin Y, Wu Y, Jenkins K, Farmer DB, Humes JJ, Yoder NL, Seo JT, Green AA, Hersam MC, Krupke R, Avouris P, Steiner M, Engel M, Lin Y, Wu Y, Jenkins K, Green AA, Hersam MC, Krupke R, Avouris P (2014) High-frequency performance of scaled carbon nanotube array field-effect transistors. Appl Phys Lett 101:053123

    Article  Google Scholar 

  75. Cao Y, Brady GJ, Gui H, Rutherglen C, Arnold MS, Zhou C (2016) Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz. ACS Nano 10:6782–6790

    Article  Google Scholar 

  76. Zhong D, Shi H, Ding L, Zhao C, Liu J, Zhou J, Zhang Z, Peng L (2019) Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz. ACS Nano 11:42496–42503

    Google Scholar 

  77. Raimond JM, Brune M, Computation Q, Martini F De, Monroe C (2004) Electric field effect in atomically thin carbon films. Science (80- ) 306:666–669

    Google Scholar 

  78. Schwierz F (2010) Graphene transistors. Nat Publ Gr 5:487–496

    Google Scholar 

  79. Neto AHC (2009) The electronic properties of graphene. RevModPhys 81:109–162

    Google Scholar 

  80. Lin Y, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu H, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science (80- ) 327:662

    Google Scholar 

  81. Badmaev A, Che Y, Li Z, Wang C, Zhou C (2012) Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano 6:3371–3376

    Article  Google Scholar 

  82. Guo Z, Dong R, Chakraborty PS, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler JD, Berger C, De HWA (2013) Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett 13:942–947

    Article  Google Scholar 

  83. Sur UK (2012) Graphene: a rising star on the horizon of materials science. Int J Electrochem 2012:237689

    Article  Google Scholar 

  84. Khan K, Tareen AK, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H, Guo Z (2020) Recent developments in emerging two-dimensional materials and their applications. J Mater Chem C 8:387–440

    Article  Google Scholar 

  85. Kalavakunda V, Hosmane NS (2016) Mini review graphene and its analogues. Nanotechnol Rev 5:369–376

    Article  Google Scholar 

  86. Kim K, Choi J, Kim T, Cho S, Chung H (2011) A role for graphene in silicon-based semiconductor devices. Nature 479:338–344

    Article  Google Scholar 

  87. Feng X, Zhao X, Yang L, Li M, Qie F, Guo J, Zhang Y, Li T (2018) All carbon materials pn diode. Nat Commun 9:3750

    Article  Google Scholar 

  88. Jariwala D, Sangwan VK, Wu C, Prabhumirashi PL, Geier ML (2013) Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode. PNAS 110:18076–18080

    Article  Google Scholar 

  89. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. ChemRev 113:192–270

    Google Scholar 

  90. Fan Q, Li J, Zhu Y, Yang Z, Shen T, Guo Y, Wang L, Mei T, Wang J, Wang X (2020) Functional carbon quantum dots for highly sensitive graphene transistors for Cu2+ ion detection. ACS Appl Mater Interfaces 12:4797–4803

    Article  Google Scholar 

  91. Liu W, Song M, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436

    Article  Google Scholar 

  92. Khang D-Y, Jiang H, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science (80- ) 311:208 LP–212

    Google Scholar 

  93. Nanotube GC, Huang J, Fang J, Liu C, Chu C (2011) Effective work function modulation of graphene/carbon nanotube composite films as transparent cathodes for organic optoelectronics. ACS Nano 5:6262–6271

    Article  Google Scholar 

  94. Cao Q, Hur S-H, Zhu Z-T, Sun YG, Wang C-J, Meitl MA, Shim M, Rogers JA (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309

    Article  Google Scholar 

  95. Aikawa S Transparent all-carbon-nanotube transistors D transparent all-carbon-nanotube transistors, Einarsson E, Thurakitseree T, Chiashi S, Nishikawa E (2012) Deformable transparent all-carbon-nanotube transistors. Appl Phys Lett 100:063502

    Google Scholar 

  96. Sun D, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotech 6:156–161

    Article  Google Scholar 

  97. Sun D, Timmermans MY, Kaskela A, Nasibulin AG, Kishimoto S, Mizutani T, Kauppinen EI, Ohno Y (2013) Mouldable all-carbon integrated circuits. Nat Commun 4:2302

    Article  Google Scholar 

  98. Lu R, Christianson C, Weintrub B, Wu JZ (2013) High photoresponse in hybrid graphene−carbon nanotube infrared detectors. ACS Appl Mater Interfaces 5:11703–11707

    Article  Google Scholar 

  99. Kim SH, Song W, Jung MW, Kang M, Kim K (2014) Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors. Adv Mater 26:4247–4252

    Article  Google Scholar 

  100. Tung VC, Chen L, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949–1955

    Article  Google Scholar 

  101. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  Google Scholar 

  102. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science (80-) 277:1971–1975

    Google Scholar 

  103. Selamneni V, Barya P, Deshpande N, Sahatiya P (2019) Low-cost, disposable, flexible, and smartphone enabled pressure sensor for monitoring drug dosage in smart medicine applications. IEEE Sens J 19:11255–11261

    Article  Google Scholar 

  104. Selamneni V, Dave A, Mihailovic P, Mondal S, Sahatiya P (2020) Large area pressure sensor for smart floor sensor applications—an occupancy limiting technology to combat social distancing. IEEE Consum Electron Mag. https://doi.org/10.1109/MCE.2020.3033932

    Article  Google Scholar 

  105. Selamneni V, Dave A, Mihailovic P , Mondal S and Sahatiya P (2020) Large area pressure sensor for smart floor sensor applications—an occupancy limiting technology to combat social distancing. IEEE Consum Electron Mag. https://doi.org/10.1109/MCE.2020.3033932.

  106. Selamneni V, B S A, Sahatiya P(2020) Highly air-stabilized black phosphorus on disposable paper substrate as a tunnelling effect-based highly sensitive piezoresistive strain sensor. Med Dev Sensors 3:e10099

    Google Scholar 

  107. Zhan Z, Lin R, Tran V, An J, Wei Y, Du H, Tran T, Lu W (2017) Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin. ACS Appl Mater Interfaces 9:37921–37928

    Article  Google Scholar 

  108. Sahatiya P, Badhulika S (2016) Solvent-free fabrication of multi-walled carbon nanotube based flexible pressure sensors for ultra-sensitive touch pad and electronic skin applications. RSC Adv 6:95836–95845

    Article  Google Scholar 

  109. Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin–inspired microstructured ferroelectric skins discriminate static / dynamic pressure and temperature stimuli. Sci Adv 1:e1500661

    Article  Google Scholar 

  110. Zhu S, Ghatkesar MK, Zhang C, Janssen GCAM, Zhu S, Ghatkesar K, Zhang C, Janssen GCAM (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102:161904

    Article  Google Scholar 

  111. Yao H, Ge J, Wang C, Wang X, Hu W, Zheng Z (2013) A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv Mater 25:6692–6698

    Article  Google Scholar 

  112. Jian M, Xia K, Wang Q, Yin Z, Wang H, Wang C (2017) Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. RSC Adv 9:22740–22748

    Google Scholar 

  113. Tian H, Shu Y, Wang X, Mohammad MA, Bie Z, Xie Q, Li C, Mi W, Yang Y, Ren T (2015) A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep 5:8603

    Article  Google Scholar 

  114. Lee MJ, Hong HP, Min NK, Lee D (2012) A fully-microfabricated SWCNT film strain sensor. J Korean Phys Soc 61:1656–1659

    Article  Google Scholar 

  115. Dharap P, Li Z, Nagarajaiah S (2004) Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 15:379–382

    Article  Google Scholar 

  116. Zhang S, Zhang H, Yao G, Liao F, Gao M, Huang Z, Li K, Lin Y (2015) Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J Alloys Compd 652:48–54

    Article  Google Scholar 

  117. Zhao J, He C, Yang R, Shi Z, Cheng M, Yang W, Xie G, Wang D, Shi D, Zhang G (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101:63112

    Article  Google Scholar 

  118. Li X, Zhang R, Yu W, Wang K, Wei J, Wu D, Cao A, Li Z, Cheng Y, Zheng Q, Ruoff RS, Zhu H (2012) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2:870

    Article  Google Scholar 

  119. Davaji B, Cho HD, Malakoutian M, Lee J, Panin G, Kang TW, Lee CH (2017) A patterned single layer graphene resistance temperature sensor. Sci Rep 7:8811

    Article  Google Scholar 

  120. Sahatiya P, Puttapati SK, Srikanth VVSS, Badhulika S (2016) Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flex Print Electron 1:25006

    Article  Google Scholar 

  121. Compagnone D, Di Francia G, Di Natale C, Neri G, Seeber R, Tajani A (2017) Chemical sensors and biosensors in Italy: a review of the 2015 literature. Sensors (Switzerland) 17:1–22

    Article  Google Scholar 

  122. Veeralingam S, Sahatiya P, Badhulika S (2019) Low cost, flexible and disposable SnSe2 based photoresponsive ammonia sensor for detection of ammonia in urine samples. Sens Actuators B Chem 297:126725

    Article  Google Scholar 

  123. Bokka N, Selamneni V, Sahatiya P (2020) A water destructible SnS2 QD/PVA film based transient multifunctional sensor and machine learning assisted stimulus identification for non-invasive personal care diagnostics. Mater Adv. https://doi.org/10.1039/d0ma00573h

    Article  Google Scholar 

  124. Selamneni V, Gohel K, Bokka N, Sharma S, Sahatiya P (2020) MoS2 based Multifunctional sensor for both chemical and physical stimuli and their classification using machine learning algorithms. IEEE Sens J. https://doi.org/10.1109/JSEN.2020.3023309

    Article  Google Scholar 

  125. Leelasree T, Selamneni V, Akshaya T, Sahatiya P, Aggarwal H (2020) MOF based flexible, low-cost chemiresistive device as a respiration sensor for sleep apnea diagnosis. J Mater Chem B. https://doi.org/10.1039/D0TB01748E

    Article  Google Scholar 

  126. Sahatiya P, Badhulika S (2016) Graphene hybrid architectures for chemical sensors. Springer, Cham, Switzerland, pp 259–285

    Google Scholar 

  127. Yang S, Jiang C, Wei SH (2017) Gas sensing in 2D materials. Appl Phys Rev 4:021304

    Article  Google Scholar 

  128. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10:5469–5502

    Article  Google Scholar 

  129. Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28:795–831

    Article  Google Scholar 

  130. Choi S-J, Jang B-H, Lee S-J, Min BK, Rothschild A, Kim I-D (2014) Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl Mater Interfaces 6:2588–2597

    Article  Google Scholar 

  131. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G, Sun M, Liu L (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955–6961

    Article  Google Scholar 

  132. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  Google Scholar 

  133. Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Intrinsic response of graphene vapor sensors. Nano Lett 9:1472–1475

    Article  Google Scholar 

  134. Rumyantsev S, Liu G, Shur MS, Potyrailo RA, Balandin AA (2012) Selective gas sensing with a single pristine graphene transistor. Nano Lett 12:2294–2298

    Article  Google Scholar 

  135. Gautam M, Jayatissa AH (2012) Detection of organic vapors by graphene films functionalized with metallic nanoparticles. J Appl Phys 112:114326

    Article  Google Scholar 

  136. Yavari F, Chen Z, Thomas AV, Ren W, Cheng H-M, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci Rep 1:166

    Article  Google Scholar 

  137. Kumar S, Kaushik S, Pratap R, Raghavan S (2015) Graphene on paper: a simple, low-cost chemical sensing platform. ACS Appl Mater Interfaces 7:2189–2194

    Article  Google Scholar 

  138. Park S, Park M, Kim S, Yi S, Kim M, Son J, Cha J, Hong J, Park S, Park M, Kim S, Yi S, Kim M, Son J (2017) NO2 gas sensor based on hydrogenated graphene. Appl Phys Lett 111:213102

    Article  Google Scholar 

  139. Kim YH, Kim SJ, Kim Y-J, Shim Y-S, Kim SY, Hong BH, Jang HW (2015) Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 9:10453–10460

    Article  Google Scholar 

  140. Choi H, Choi JS, Kim J-S, Choe J-H, Chung KH, Shin J-W, Kim JT, Youn D-H, Kim K-C, Lee J-I, Choi S-Y, Kim P, Choi C-G, Yu Y-J (2014) Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10:3685–3691

    Article  Google Scholar 

  141. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140

    Article  Google Scholar 

  142. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chemie Int Ed 49:2154–2157

    Article  Google Scholar 

  143. Chung MG, Kim DH, Seo DK, Kim T, Im HU, Lee HM, Yoo JB, Hong SH, Kang TJ, Kim YH (2012) Flexible hydrogen sensors using graphene with palladium nanoparticle decoration. Sens Actuators B Chem 169:387–392

    Article  Google Scholar 

  144. Khalaf AL, Mohamad FS, Rahman NA, Lim HN, Paiman S, Yusof NA, Mahdi MA, Yaacob MH (2017) Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite. Opt Mater Express 7:1858–1870

    Article  Google Scholar 

  145. Deng S, Tjoa V, Fan HM, Tan HR, Sayle DC, Olivo M, Mhaisalkar S, Wei J, Sow CH (2012) Reduced Graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J Am Chem Soc 134:4905–4917

    Article  Google Scholar 

  146. Al-Mashat L, Shin K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou X, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173

    Article  Google Scholar 

  147. Jeong HY, Lee DS, Choi HK, Lee DH, Kim JE, Lee JY, Lee WJ, Kim SO, Choi SY (2010) Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl Phys Lett 96:2010–2013

    Article  Google Scholar 

  148. Yang W, Wan P, Zhou X, Hu J, Guan Y, Feng L (2014) Additive-Free Synthesis Of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl Mater Interfaces 6:21093–21100

    Article  Google Scholar 

  149. Zhang D, Chang H, Li P, Liu R (2016) Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J Mater Sci Mater Electron 27:3723–3730

    Article  Google Scholar 

  150. Kraus F, Cruz S, Müller J (2003) Plasmapolymerized silicon organic thin films from HMDSN for capacitive humidity sensors. Sens Actuators B Chem 88:300–311

    Article  Google Scholar 

  151. Rittersma ZM (2002) Recent achievements in miniaturised humidity sensors-a review of transduction techniques. Sensors Actuators a 96:196–210

    Article  Google Scholar 

  152. Varghese OK, Grimes CA (2003) Metal oxide nanoarchitectures for environmental sensing. J Nanosci Nanotechnol 3:277–293

    Article  Google Scholar 

  153. Rittersma ZM, Splinter A, Bodecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sens Actuators B 68:210–217

    Article  Google Scholar 

  154. Björkqvist M, Salonen J, Paski J, Laine E (2004) Characterization of thermally carbonized porous silicon humidity sensor. Sens Actuators a Phys 112:244–247

    Article  Google Scholar 

  155. Chu J, Peng X, Feng P, Sheng Y, Zhang J (2013) Sensors and actuators B: chemical Study of humidity sensors based on nanostructured carbon films produced by physical vapor deposition. Sens Actuators B Chem 178:508–513

    Article  Google Scholar 

  156. Jin H, Tao X, Feng B, Yu L, Wang D, Dong S (2017) A humidity sensor based on quartz crystal microbalance using graphene oxide as a sensitive layer. Vaccum 140:101–105

    Article  Google Scholar 

  157. Kumar U, Yadav BC (2019) Development of humidity sensor using modified curved MWCNT based thin film with DFT calculations. Sens Actuators B Chem 288:399–407

    Article  Google Scholar 

  158. Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N (2013) Ultrafast graphene oxide humidity sensors. ACS Nano 7:11166–11173

    Article  Google Scholar 

  159. Dresselhaus BMS, Terrones M (2013) Carbon-based nanomaterials from a historical perspective. Proc IEEE 101:1522–1535

    Article  Google Scholar 

  160. Wang Y, Huang K, Wu X (2017) Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron 97:305–316

    Article  Google Scholar 

  161. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya RMP (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970

    Article  Google Scholar 

  162. Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134:10777–10779

    Article  Google Scholar 

  163. Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172

    Article  Google Scholar 

  164. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. TrAC Trends Anal Chem 39:87–113

    Article  Google Scholar 

  165. Balasubramanian RK, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452–468

    Article  Google Scholar 

  166. Wang J, Lin Y (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Analyt Chem 27:619–626

    Article  Google Scholar 

  167. Griese S, Kampouris DK, Kadara RO, Banks CE (2008) A critical review of the electrocatalysis reported at C60 modified electrodes. Electroanalysis 20:1507–1512

    Article  Google Scholar 

  168. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L -Tryptophan, L -Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

    Article  Google Scholar 

  169. Nguyen HV, Richtera L, Moulick A, Xhaxhiu K, Kudr J, Cernei N, Polanska H, Heger Z, Masarik M, Kopel P, Stiborova M, Eckschlager T, Adam V, Kizek R (2016) Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode. Analyst 141:2665–2675

    Article  Google Scholar 

  170. Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry Bioenerg 41:121–125

    Article  Google Scholar 

  171. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915–920

    Article  Google Scholar 

  172. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58

    Article  Google Scholar 

  173. Lefrant S, Baibarac M, Baltog I, Mevellec JY, Mihut L, Chauvet O (2004) SERS spectroscopy studies on the electrochemical oxidation of single-walled carbon nanotubes in sulfuric acid solutions. Synth Met 144:133–142

    Article  Google Scholar 

  174. Rakhi RB, Sethupathi K, Ramaprabhu S (2009) A Glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J Phys Chem B 113:3190–3194

    Article  Google Scholar 

  175. Qiu J-D, Huang J, Liang R-P (2011) Nanocomposite film based on graphene oxide for high performance flexible glucose biosensor. Sens Actuators B Chem 160:287–294

    Article  Google Scholar 

  176. Lu W, Luo Y, Chang G, Sun X (2011) Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosens Bioelectron 26:4791–4797

    Article  Google Scholar 

  177. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070–1074

    Article  Google Scholar 

  178. Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26:6158–6160

    Article  Google Scholar 

  179. Wu P, Shao Q, Hu Y, Jin J, Yin Y, Zhang H, Cai C (2010) Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim Acta 55:8606–8614

    Article  Google Scholar 

  180. Chen Y, Li Y, Sun D, Tian D, Zhang J, Zhu J-J (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21:7604–7611

    Article  Google Scholar 

  181. Wang K, Liu Q, Guan Q-M, Wu J, Li H-N, Yan J-J (2011) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26:2252–2257

    Article  Google Scholar 

  182. Sun J-Y, Huang K-J, Fan Y, Wu Z-W, Li D-D (2011) Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Microchim Acta 174:289

    Article  Google Scholar 

  183. Lee J-S (2011) Progress in non-volatile memory devices based on nanostructured materials and nanofabrication. J Mater Chem 21:14097–14112

    Article  Google Scholar 

  184. Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36

    Article  Google Scholar 

  185. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840

    Article  Google Scholar 

  186. Lee M, Han S, Jeon SH, Park BH, Kang BS, Ahn S, Kim KH, Lee CB, Kim CJ, Yoo I, Seo DH, Li X, Park J, Lee J, Park Y (2009) Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett 9:1476–1481

    Article  Google Scholar 

  187. Waser R, Dittmann R, Staikov G, Szot K (2009) Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663

    Article  Google Scholar 

  188. Watanabe Y, Bednorz JG, Bietsch A, Gerber C, Widmer D, Beck A, Wind SJ, Watanabe Y, Bednorz JG, Bietsch A, Gerber C, Widmer D, Beck A (2001) Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl Phys Lett 78:3738

    Article  Google Scholar 

  189. Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh D, Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh D, Joung YS, Yoo IK (2004) Reproducible resistance switching in polycrystalline NiO films. Appl Phys Lett 85:5655

    Article  Google Scholar 

  190. Beck A, Bednorz JG, Gerber C, Rossel C, Widmer D, Beck A, Bednorz JG, Gerber C, Rossel C, Widmer D (2000) Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett 77:139

    Article  Google Scholar 

  191. Rani.A and Kim D.H. (2016) A mechanistic study on graphene-based nonvolatile ReRAM devices. J Mater Chem C 4:11007–11031

    Article  Google Scholar 

  192. Hlee Ã, Hen PC, Ang CW, Aikap SM (2007) Low-Power Switching of nonvolatile resistive memory using hafnium oxide low-power switching of nonvolatile resistive memory using hafnium oxide. Jpn J Appl Phys 46:2175–2179

    Article  Google Scholar 

  193. Yalagala B, Sahatiya P, Mattela V, Badhulika S (2019) Ultra-low cost, large area graphene/MoS2-based piezotronic memristor on paper: a systematic study for both direct current and alternating current inputs. ACS Appl Electron Mater 1:883–891

    Article  Google Scholar 

  194. Tsai C, Xiong F, Pop E, Shim M, Science M, Seitz F, Engineering C, States U (2013) Resistive random access memory enabled by carbon nanotube. ACS Nano 7:5360–5366

    Article  Google Scholar 

  195. Yang P, Chang W, Teng P, Jeng S, Lin S, Chiu P, He J (2013) Fully transparent resistive memory employing graphene electrodes for eliminating undesired surface effects. Proc IEEE 101:1732–1739

    Article  Google Scholar 

  196. Selamneni V, Nerurkar N, Sahatiya P (2020) Large area deposition of MoSe2 on paper as a flexible near-infrared photodetector. IEEE Sens Lett 4:1–4

    Article  Google Scholar 

  197. Sahatiya P, Solomon Jones S, Thanga Gomathi P, Badhulika S (2017) Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation. 2D Mater 4:25053

    Google Scholar 

  198. Veerla RS, Sahatiya P, Badhulika S (2017) Fabrication of a flexible UV photodetector and disposable photoresponsive uric acid sensor by direct writing of ZnO pencil on paper. J Mater Chem C 5:10231–10240

    Article  Google Scholar 

  199. Selamneni V, Koduvayur Ganeshan S, Sahatiya P (2020) All MoS2 based 2D/0D localized unipolar heterojunctions as a flexible broadband (UV-Vis-NIR) photodetector. J Mater Chem C. https://doi.org/10.1039/D0TC02651D

    Article  Google Scholar 

  200. Yang D, Ma D (2019) Development of organic semiconductor photodetectors: from mechanism to applications. Adv Opt Mater 7:1800522

    Article  Google Scholar 

  201. Selamneni V, Sahatiya P (2020) Bolometric effect enhanced ultrafast graphene based do-it-yourself wearable respiration sensor for personal healthcare monitoring. IEEE Sens J 20:3452–3459

    Article  Google Scholar 

  202. Sahatiya P, Badhulika S (2017) Strain-modulation-assisted enhanced broadband photodetector based on large-area, flexible, few-layered Gr/MoS2 on cellulose paper. Nanotechnology 28:455204

    Article  Google Scholar 

  203. Joshna P, Gollu SR, Raj PMP, Rao BVVSNP, Sahatiya P, Kundu S (2019) Plasmonic Ag nanoparticles arbitrated enhanced photodetection in p-NiO/n-rGO heterojunction for future self-powered UV photodetectors. Nanotechnology 30:365201

    Article  Google Scholar 

  204. Sahatiya P, Shinde A, Badhulika S (2018) Pyro-phototronic nanogenerator based on flexible 2D ZnO/graphene heterojunction and its application in self-powered near infrared photodetector and active analog frequency modulation. Nanotechnology 29:325205

    Article  Google Scholar 

  205. Sahatiya P, Badhulika S (2016) UV/ozone assisted local graphene (p)/ZnO(n) heterojunctions as a nanodiode rectifier. J Phys D Appl Phys 49:265101

    Article  Google Scholar 

  206. Sahatiya P, Gopalakrishnan A, Badhulika S (2017) Paper based large area Graphene/MoS2 visible light photodetector. In: 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), pp 728–730

    Google Scholar 

  207. Ma L, Ouyang J, Yang Y (2004) High-speed and high-current density C60 diodes. Appl Phys Lett 84:4786–4788

    Article  Google Scholar 

  208. Szendrei K, Cordella F, Kovalenko MV, Böberl M, Hesser G, Yarema M, Jarzab D, Mikhnenko OV, Gocalinska A, Saba M, Quochi F, Mura A, Bongiovanni G, Blom PWM, Heiss W, Loi MA (2009) Solution-Processable near-IR photodetectors based on electron transfer from PbS nanocrystals to fullerene derivatives. Adv Mater 21:683–687

    Article  Google Scholar 

  209. Guo F, Xiao Z, Huang J (2013) Photodetectors: fullerene photodetectors with a linear dynamic range of 90 dB enabled by a cross-linkable buffer layer (Advanced Optical Materials 4/2013). Adv Opt Mater 1:275

    Article  Google Scholar 

  210. Zhang Q, Jie J, Diao S, Shao Z, Zhang Q, Wang L, Deng W, Hu W, Xia H, Yuan X, Lee S-T (2015) Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 9:1561–1570

    Article  Google Scholar 

  211. Tang L, Ji R, Li X, Bai G, Liu CP, Hao J, Lin J, Jiang H, Teng KS, Yang Z, Lau SP (2014) Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano 8:6312–6320

    Article  Google Scholar 

  212. Rao F, Liu X, Li T, Zhou Y, Wang Y (2009) The synthesis and fabrication of horizontally aligned single-walled carbon nanotubes suspended across wide trenches for infrared detecting application. Nanotechnology 20:55501

    Article  Google Scholar 

  213. Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Ma Z, Qiu S, Li Q, Liang X, Zhang Z, Wang S, Peng L-M (2016) Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv Opt Mater 4:238–245

    Article  Google Scholar 

  214. He X, Fujimura N, Lloyd JM, Erickson KJ, Talin AA, Zhang Q, Gao W, Jiang Q, Kawano Y, Hauge RH, Léonard F, Kono J (2014) Carbon nanotube terahertz detector. Nano Lett 14:3953–3958

    Article  Google Scholar 

  215. Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R (2015) Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat Commun 6:8589

    Article  Google Scholar 

  216. Lu R, Christianson C, Weintrub B, Wu JZ (2013) High photoresponse in hybrid graphene-carbon nanotube infrared detectors. ACS Appl Mater Interfaces 5:11703–11707

    Article  Google Scholar 

  217. Kang P, Wang MC, Knapp PM, Nam S (2016) Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv Mater 28:4639–4645

    Article  Google Scholar 

  218. Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301

    Article  Google Scholar 

  219. Kim CO, Hwang SW, Kim S, Shin DH, Kang SS, Kim JM, Jang CW, Kim JH, Lee KW, Choi S-H, Hwang E (2014) High-performance graphene-quantum-dot photodetectors. Sci Rep 4:5603

    Article  Google Scholar 

  220. Gomathi PT, Sahatiya P, Badhulika S (2017) Large-area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate. Adv Funct Mater 27:1701611

    Article  Google Scholar 

  221. Sahatiya P, Badhulika S (2015) One-step in situ synthesis of single aligned graphene–ZnO nanofiber for UV sensing. RSC Adv 5:82481–82487

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Research Initiation Grant (RIG and ACRG), Birla Institute of Technology Pilani, Hyderabad Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parikshit Sahatiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selamneni, V., Bokka, N., Adepu, V., Sahatiya, P. (2021). Carbon Nanomaterials for Emerging Electronic Devices and Sensors. In: Hazra, A., Goswami, R. (eds) Carbon Nanomaterial Electronics: Devices and Applications. Advances in Sustainability Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-1052-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1052-3_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1051-6

  • Online ISBN: 978-981-16-1052-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics