Skip to main content

Application of Plant Growth Promoting Rhizobacteria (PGPR) in Crop Productivity Improvement and Sustainable Agriculture

  • Chapter
  • First Online:
Agricultural Biotechnology: Latest Research and Trends

Abstract

The world population is increasing amazingly, which exerts continuous pressure on farmers to enhance crop productivity and to achieve these targets, a large quantity of chemical fertilizers is being used in the agriculture system. The continual application of chemical fertilizers results in considerably declining microbial activity, nutritional imbalance, and a drop in the population of beneficial microbes in the soil. At present, global climate change is a significant problem for agriculture and considered abiotic stress. The application of bacterial inoculation, specifically the plant growth-promoting rhizobacteria (PGPR), is an effective and eco-friendly technique to improve plant health under normal and stressful conditions. This chapter provides the detailed impact of global climate change, and environmental stress on crop plants thus compromises crop yield. The PGPR employ various mechanisms for plant growth promotion comprising uptake of essential nutrients, regulation and modulation of phytohormones, and production of biocontrol metabolites such as antibiotics, siderophores, and volatile organic compounds. Moreover, the role of PGPR in the reprogramming of host plant transcriptome under various environmental stresses is also efficiently known. The application of PGPR is noted to improve the growth and yield of various crops such as cereals, legumes, oil seed and vegetables. The PGPR have a vast perspective in agriculture especially, concerning global food security, climate change resilience, and sustainability of the agriculture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari M, Yadav DR, Kim SW, Um YH, Kim HS, Lee SC, Song JY, Kim HG, Lee YS (2017) Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with rhizosphere associated bacteria. Plant Pathol J 33:170–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adriana C, Paulucci N, Lopez-Gomez M, Hidalgo-Castellanos J, Pla CL, Dardanelli MS (2019) Restrictive water condition modifies the root exudates composition during peanut-PGPR interaction and conditions early events, reversing the negative effects on plant growth. Plant Physiol Biochem 142:519–527

    Article  Google Scholar 

  • Ahmad S, Daur I, Al-Solaimani SG, Mahmood S, Bakhashwain AA, Madkour MH, Yasir M (2016) Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop. Pak J Bot 48:2109–2120

    CAS  Google Scholar 

  • Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T (2020) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci 10:1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander A, Singh VK, Mishra A, Jha B (2019) Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One 14:e0222405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Rao LV (2014) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502

    Article  CAS  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum MZ, Ghazanfar MU, Hussain I (2019) Bio-efficacy of Trichoderma isolates and Bacillus subtilis against root rot of muskmelon Cucumis melo L. caused by Phytophthora drechsleri under controlled and field conditions. Pak J Bot 51:1877–1882

    Article  CAS  Google Scholar 

  • Anuroopa N, Bagyaraj DJ, Bagela A, Rao P (2017) Inoculation with selected microbial consortia not only enhances growth and yield of Withania somnifera but also reduces fertilizer application by 25% under field conditions. Proc Indian Natn Sci Acad 83:957–971

    Google Scholar 

  • Araujo J, Diaz-Alcantara CA, Urbano B, Gonzalez-Andres F (2020) Inoculation with native Bradyrhizobium strains formulated with biochar as carrier improves the performance of pigeonpea (Cajanus cajan L.). Eur J Agron 113:125985

    Article  CAS  Google Scholar 

  • Arikan S, Ipek M, Eşitken A, Pırlak L, Donmez MF, Turan M (2020) Plant growth promoting rhizobacteria mitigate deleterious combined effects of salinity and lime in soil in strawberry plants. J Plant Nut 43:2028–2039

    Article  CAS  Google Scholar 

  • Arora NK (2019) Impact of climate change on agriculture production and its sustainable solutions. Environ Sustain 2:95–96

    Article  Google Scholar 

  • Asari S, Matzén S, Petersen MA, Bejai S, Meijer J (2016) Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol Ecol 92:fiw070

    Article  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    Article  PubMed  PubMed Central  Google Scholar 

  • Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Abid M, Rizwan M, Shahid MR, Alotaibi M, Al-Ashkar I, Mubushar M (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10:16975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Zinovkina NY, Safronova VI, Litvinsky VA, Nosikov VV, Zavalin AA, Tikhonovich IA (2019) Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environ Exp Bot 167:103859

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Barnawal D, Wasnik K, Tewari SK, Kalra A (2016) Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl Soil Ecol 100:211–225

    Article  Google Scholar 

  • Bist V, Niranjan A, Ranjan M, Lehri A, Seem K, Srivastava S (2020) Silicon-solubilizing media and its implication for characterization of bacteria to mitigate biotic stress. Front Plant Sci 11:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloch SE, Ryu MH, Ozaydin B, Broglie R (2020) Harnessing atmospheric nitrogen for cereal crop production. Curr Opin Biotechnol 62:181–188

    Article  CAS  PubMed  Google Scholar 

  • Campos P, Borie F, Cornejo P, Lopez-Raez JA, López-García Á, Seguel A (2018) Phosphorus acquisition efficiency related to root traits: is mycorrhizal symbiosis a key factor to wheat and barley cropping? Front Plant Sci 9:752

    Article  PubMed  PubMed Central  Google Scholar 

  • Chauhan PS, Lata C, Tiwari S, Chauhan AS, Mishra SK, Agrawal L, Chakrabarty D, Nautiyal CS (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress. Sci Rep 9:11912

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenniappan C, Narayanasamy M, Daniel GM, Ramaraj GB, Ponnusamy P, Sekar J, Ramalingam PV (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64

    Article  CAS  Google Scholar 

  • Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox CE, Brandl MT, de Moraes MH, Gunasekera S, Teplitski M (2018) Production of the plant hormone auxin by Salmonella and its role in the interactions with plants and animals. Front Microbiol 8:2668

    Article  PubMed  PubMed Central  Google Scholar 

  • Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M (2020) ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS One 15:e0230615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Lv L, Wang W, Liu Y, Yin C, Xu Q, Yan H, Fu J, Liu X (2019) Differences in distribution of potassium-solubilizing bacteria in forest and plantation soils in Myanmar. Int J Environ Res Public Health 16:700

    Article  CAS  PubMed Central  Google Scholar 

  • Drogue B, Sanguin H, Chamam A, Mozar M, Llauro C, Panaud O, Prigent-Combaret C, Picault N, Wisniewski-Dyé F (2014) Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Front Plant Sci 5:607

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Datta JK, Mandal NC (2017) Evaluation of indigenous rhizobacterial strains with reduced dose of chemical fertilizer towards growth and yield of mustard (Brassica campestris) under old alluvial soil zone of West Bengal, India. Ann Agrar Sci 15:447–452

    Article  Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and stream flow in a central European low mountain range. J Hydrol 284:244–252

    Article  CAS  Google Scholar 

  • Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Jabborova D, Rasanen LA, Liao H (2017) Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture. J Plant Interact 12:100–107

    Article  CAS  Google Scholar 

  • Ekin Z (2019) Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11:3417

    Article  CAS  Google Scholar 

  • Ekin Z (2020) Co-application of humic acid and Bacillus strains enhances seed and oil yields by mediating nutrient acquisition of safflower (Carthamus tinctorius l.) plants in a semi-arid region. Appl Ecol Environ Res 18:1883–1900

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Zhang S, Mo X, Li Y, Fu Y, Liu Z (2017) Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere 27:1027–1036

    Article  CAS  Google Scholar 

  • Freitas F, Alves VD, Pais J, Costa N, Oliveira C, Mafra L et al (2009) Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresour Technol 100:859–865

    Article  CAS  PubMed  Google Scholar 

  • Gautam HR, Sharma HL (2012) Environmental degradation, climate change and effect on agriculture. J Kurukshetra 60:3–5

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Li J, Shah S, Penrose DM, Moffatt BA (1999) ACC deaminase is central to the functioning of plant growth promoting rhizobacteria. In: Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene II. Springer, Dordrecht’, pp 293–298

    Chapter  Google Scholar 

  • Gontia-Mishra I, Deshmukh D, Tripathi N, Bardiya-Bhurat K, Tantwai K, Tiwari S (2013) Isolation, morphological and molecular characterization of phytate-hydrolysing fungi by 18S rDNA sequence analysis. Braz J Microbiol 44:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gontia-Mishra I, Sapre S, Deshmusk R, Sikdar S, Tiwari S (2020) Microbe-mediated drought tolerance in plants: current developments and future challenges. In: Yadav AN et al (eds) Plant microbiomes for sustainable agriculture, sustainable development and biodiversity, vol 25. Springer Nature, Cham, pp 351–379

    Chapter  Google Scholar 

  • Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017a) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016a) Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria. Plant Biol 18:992–1000

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016b) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35:1000–1012

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Tiwari S (2017b) Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190

    Article  Google Scholar 

  • Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-amino cyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Kumar CVS (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus 5:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Goswami M, Deka S (2020) Plant growth-promoting rhizobacteria alleviators of abiotic stresses in soil: a review. Pedosphere 30:40–61

    Article  Google Scholar 

  • Gowtham HG, Murali M, Singh SB, Lakshmeesha TR, Murthy KN, Amruthesh KN, Niranjana SR (2018) Plant growth promoting rhizobacteria- Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol Control 126:209–217

    Article  CAS  Google Scholar 

  • Grosskinsky DK, Tafner R, Moreno MV, Stenglein SA, de Salamone IEG, Nelson LM et al (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Ghirardo A, Weber B, Schnitzler JP, Benz JP, Rosenkranz M (2019) Trichoderma species differ in their volatile profiles and in antagonism toward ectomycorrhiza Laccaria bicolor. Front Microbiol 10:891

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Gupta S, Didwania N, Singh D (2020) Biological control of mustard blight caused by Alternaria brassicae using plant growth promoting bacteria. Curr Plant Biol 23:100166

    Article  Google Scholar 

  • Gutierrez-Luna FM, Lopez-Bucio J, Tamirano-Hernandez J, Valencia-Cantero E, de la Cruz HR, Ias-Rodriguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  CAS  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2011) An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease. Can J Microbiol 57:278–286

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiltner L (1904) Uber neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriolgie und unter besonderes Berucksichtigung der Grundugungen und Brauche (recent experiences and problems in the field of soil biotechnology and with particular attention to the foundations and fallow land). Arb Dtsch Landwirt Ges Berl (in German) 98:59–78

    Google Scholar 

  • Huntington TG (2003) Climate warming could reduce runoff significantly in New England. Agric For Meteorol 117:193–201

    Article  Google Scholar 

  • Imran A, Mirza MS, Shah TM, Malik KA, Hafeez FY (2015) Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils. Front Microbiol 6:859

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    Article  PubMed  PubMed Central  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jochum M, McWilliams KM, Borrego E, Kolomiets M, Niu G, Pierson E, Jo YK (2019) Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol 10:2106

    Article  PubMed  PubMed Central  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Tongmin Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum & Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J Appl Res Med Aroma 3:71–77

    Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Khan AL, You YH, Kim JG, Kamran M, Lee IJ (2014) Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J Microbiol Biotechnol 24:106–112

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security – a review. Progress Nat Sci 19:1665–1674

    Article  Google Scholar 

  • Karnwal A (2017) Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.). J Plant Prot Res 57:144–151

    Article  CAS  Google Scholar 

  • Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kousar B, Bano A, Khan N (2020) PGPR modulation of secondary metabolites in tomato infested with Spodoptera litura. Agronomy 10:778

    Article  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:e0152478

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Gupta A, Aggarwal A, Bhargav V (2020) Efficacy of bioinoculants on biomass, nutritional status and yield of lemon grass, Cymbopogon citratus (DC) Stapf. J Spices Aromat Crops 29:59–66

    Article  Google Scholar 

  • Kumar R, Gautam HR (2014) Climate change and its impact on agricultural productivity in India. J Climatol Weather Forecasting 2:1

    Article  Google Scholar 

  • Kumari P, Meena M, Gupta P, Dubey MK, Nath G, Upadhyay RS (2018) Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatal Agric Biotechnol 16:163–171

    Article  Google Scholar 

  • Kuramae EE, Derksen S, Schlemper TR, Dimitrov MR, Costa OYA, da Silveira APD (2020) Sorghum growth promotion by Paraburkholderia tropica and Herbaspirillum frisingense: putative mechanisms revealed by genomics and metagenomics. Microorganisms 8:725

    Article  CAS  PubMed Central  Google Scholar 

  • Li Z-J, Yang B-Y, Zheng Y, Qi Y-J, Guo J-H (2019) Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon. Front Microbiol 10:652

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W (2019) The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 14:e0217018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Xie BM, Shi XH, Ma JM, Guo CH (2015) Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil. Int J Environ Sci Technol 12:3887–3894

    Article  CAS  Google Scholar 

  • Lu M, Jiao S, Gao E, Song X, Li Z, Hao X, Rensing C, Wei G (2017) Transcriptome response to heavy metals in Sinorhizobium meliloti CCNWSX0020 reveals new metal resistance determinants that also promote bioremediation by Medicago lupulina in metal-contaminated soil. Appl Environ Microbiol 83:e01244–e01217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci 7:876

    Article  PubMed  PubMed Central  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Article  CAS  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3:10–23

    Google Scholar 

  • Mazumdar D, Saha SP, Ghosh S (2020) Isolation, screening and application of a potent PGPR for enhancing growth of chickpea as affected by nitrogen level. Int J Veg Sci 26:333–350

    Article  Google Scholar 

  • Meena KK, Bitla UM, Sorty AM, Singh DP, Gupta VK, Wakchaure GC, Kumar S (2020) Mitigation of salinity stress in wheat seedlings due to the application of phytohormone-rich culture filtrate extract of methylotrophic Actinobacterium Nocardioides sp. NIMMe6. Front Microbiol 11:2091

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhtar T, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Chaudhary HJ, Solieman TH, Ibrahim AA, Saad MA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12:2159

    Article  CAS  Google Scholar 

  • Mus F, Crook MB, Garcia K, Costas AG, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GE, Poole PS, Udvardi MK (2016) Symbiotic nitrogen fixation and the challenges to its extension to non-legumes. Appl Environ Microbiol 82:698–3710

    Article  Google Scholar 

  • Muscolo A, Panuccio MR, Zahir Z, Mahmood S, Nadeem SM (2019) Use of plant growth-promoting rhizobacteria to ameliorate the performance of lentil under salinity. J Appl Bot Food Quality 92:179–186

    CAS  Google Scholar 

  • Naqqash T, Imran A, Hameed S, Shahid M, Majeed A, Iqbal J, Hanif MK, Ejaz S, Malik KA (2020) First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci Rep 10:12893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosheen A, Naz R, Tahir AT, Yasmin H, Keyani R, Mitrevski B, Bano A, Chin ST, Marriott PJ, Hussain I (2018) Improvement of safflower oil quality for biodiesel production by integrated application of PGPR under reduced amount of NP fertilizers. PLoS One 13:e0201738

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Gupta S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Pankaj U, Singh DN, Mishra P, Gaur P, Babu CSV, Shanker K, Verma RK (2020) Autochthonous halotolerant plant growth-promoting rhizobacteria promote bacoside a yield of Bacopa monnieri (L.) Nash and phytoextraction of salt-affected soil. Pedosphere 30:671–683

    Article  Google Scholar 

  • Panpatte DG, Shukla YM, Shelat HN, Vyas RV, Jhala YK (2017) Bacterial volatile organic compounds: a new insight for sustainable agriculture. In: Panpatte D, Jhala Y, Vyas R, Shelat H (eds) Microorganisms for green revolution, Microorganisms for sustainability, vol 6. Springer, Singapore, pp 151–166

    Chapter  Google Scholar 

  • Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801

    Article  Google Scholar 

  • Pereira SIA, Abreu D, Moreira H, Vega A, Castro PML (2020) Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 6:e05106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336

    Article  PubMed  Google Scholar 

  • Perez-Rodriguez MM, Pontin M, Lipinski V, Bottini R, Piccoli P, Cohen AC (2020) Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. J Soil Sci Plant Nut 20:1614–1624

    Article  CAS  Google Scholar 

  • Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Prabhukarthikeyan SR, Keerthana U, Raguchander T (2018) Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiol Res 210:65–73

    Article  CAS  PubMed  Google Scholar 

  • Pramanik K, Mitra S, Sarkar A, Soren T, Maiti TK (2017) Characterization of cadmium-resistant Klebsiella pneumonia MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res 24:24419–24437

    Article  CAS  Google Scholar 

  • Prasad M, Srinivasan R, Chaudhary M, Choudhary M, Jat LK (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: perspectives and challenges. In: Singh AK, Kumar A, Singh PK et al (eds) PGPR Amelioration in Sustainable Agriculture. Woodhead Publishing, pp 129–157

    Google Scholar 

  • Praveen KV, Singh A (2019) Realizing the potential of a low-cost technology to enhance crop yields: evidence from a meta-analysis of biofertilizers in India. Agric Econom Res Rev 32:77–91

    Article  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in Vertisols of Central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Ramírez CA, Kloepper JW (2010) Plant growth promotion by Bacillus amyloliquefaciens FZB45 depends on inoculum rate and P-related soil properties. Biol Fertil Soils 46:835–844

    Article  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rekha K, Kumar RM, Ilango K, Rex A, Usha B (2018) Transcriptome profiling of rice roots in early response to Bacillus subtilis (RR4) colonization. Botany 96:749–765

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, Reddy PM, Martínez-Romero E (2018) Nitrogen fixation in cereals. Front Microbiol 9:1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Safdarian M, Askari H, Vahid Shariati J, Nematzadeh G (2019) Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci Rep 9:1792

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhya VZAS, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sapre S, Deshmukh R, Gontia-Mishra I, Tiwari S (2019b) Problem of mercury toxicity in crop plants: can plant growth promoting microbes (PGPM) be an effective solution? In: Maheshwari D, Dheeman S (eds) Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23. Springer, Cham, pp 253–278

    Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Article  CAS  PubMed  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2019a) ACC deaminase producing bacteria: a key player in alleviating abiotic stresses in plants. In: Meena VS (ed) Kumar A. Plant growth promoting rhizobacteria for agricultural sustainability-from theory to practices, Springer Nature, pp 267–291

    Google Scholar 

  • Schenkel D, Lemfack MC, Piechulla B, Splivallo R (2015) A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci 6:707

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12:1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakeri E, Modarres-Sanavy SAM, Dehaghi MA, Tabatabaei SA, Moradi-Ghahderijani M (2016) Improvement of yield, yield components and oil quality in sesame (Sesamum indicum L.) by N-fixing bacteria fertilizers and urea. Arch Agron Soil Sci 62:547–560

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Singh G, Aggarwal N, Khanna V (2018) Yield enhancement and phosphorus economy in lentil (Lens culinaris Medikus) with integrated use of phosphorus, rhizobium and plant growth promoting rhizobacteria. J Plant Nutr 41:737–748

    Article  CAS  Google Scholar 

  • Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant 38:110

    Article  Google Scholar 

  • Singh S, Singh BK, Yadav SM, Gupta AK (2014) Potential of biofertilizers in crop production in Indian agriculture. Am J Plant Nutr Fertilization Technol 4:33–40

    Article  Google Scholar 

  • SkZ A, Vardharajula S, Vurukonda SSKP (2018) Transcriptomic profiling of maize (Zea mays L.) seedlings in response to Pseudomonas putida stain FBKV2 inoculation under drought stress. Ann Microbiol 68:331–349

    Article  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Timmusk S, El Daim I, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One:1–13

    Google Scholar 

  • Tripathi N, Sapre S, Gontia-Mishra I, Prakash V, Tiwari S (2016) Bioactive natural products from plants and biotechnological approaches for their production. Int J Biotechnol Wellness Ind 5:91–110

    Article  CAS  Google Scholar 

  • Tsukanova KA, Meyer JJM, Bibikova TN (2017) Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis. South Afr J Bot 113:91–102

    Article  CAS  Google Scholar 

  • United Nations DoEaSA, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables 2017

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hoorn JW, Katerji N, Hamdy A, Mastororilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agri Water Manag 51:87–98

    Article  Google Scholar 

  • Vargas L, Santa Brigida AB, Mota Filho JP, De Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K, Hemerly AS (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9:e114744

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent B, Marlet S, Vidal A, Bouarfa S, Wu J, Yang J et al (2006) Water and soil salinity management and salt redistribution in irrigation systems. In: Proceedings 18th World Congress of Soil Science; 9-15 July; Philadelphia, Pennsylvania, USA

    Google Scholar 

  • Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1- minocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu J, Zhu H (2018) Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9:313

    Article  PubMed  PubMed Central  Google Scholar 

  • Waskiewicz A, Muzolf-Panek M, Goliński P (2013) Phenolic content changes in plants under salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 283–314

    Chapter  Google Scholar 

  • Winkel T, Renno JF, Payne WA (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions. J Exp Bot 48:1001–1009

    Article  CAS  Google Scholar 

  • Xie S, Wu H, Chen L, Zang H, Xie Y, Gao X (2015) Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol 15:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Shrestha AB, Vaidya R, Eriksson M, Hewitt K (2007) The Melting himalayas-regional challenges and local impacts of climate change on mountain ecosystems and livelihoods. ICIMOD Technical Paper. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal

    Google Scholar 

  • Yang W (2019) Components of rhizospheric bacterial communities of barley and their potential for plant growth promotion and biocontrol of Fusarium wilt of watermelon. Braz J Microbiol 50:749–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaoyao E, Yuan J, Yang F, Wang L, Ma J, Li J, Pu X, Raza W, Huang Q, Shen Q (2017) PGPR strain Paenibacillus polymyxa SQR-21 potentially benefits watermelon growth by re-shaping root protein expression. AMB Expr 7:104

    Google Scholar 

  • Yasmeen T, Ahmad A, Arif MS, Mubin M, Rehman K, Shahzad SM, Iqbal S, Rizwan M, Ali S, Alyemeni MN, Wijaya L (2020) Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiol Biochem 156:242–256

    Article  CAS  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Naeem M, Danish S, Fahad S, Datta R, Abbas M, Rahi AA, Brtnicky M, Holátko J, Tarar ZH, Nasir M (2020) Alleviation of cadmium adverse effects by improving nutrients uptake in bitter gourd through cadmium tolerant rhizobacteria. Environments 7:54

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Zhang S, Xia M, Wu X, Qiu G, Shen L (2020) Insights into the production of extracellular polymeric substances of Cupriavidus pauculus 1490 under the stimulation of heavy metal ions. RSC Adv 10:20385–20394

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Ann Rev Plant Biol 61:49–64

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gontia-Mishra, I., Sapre, S., Sikdar, S., Tiwari, S. (2021). Application of Plant Growth Promoting Rhizobacteria (PGPR) in Crop Productivity Improvement and Sustainable Agriculture. In: Kumar Srivastava, D., Kumar Thakur, A., Kumar, P. (eds) Agricultural Biotechnology: Latest Research and Trends . Springer, Singapore. https://doi.org/10.1007/978-981-16-2339-4_27

Download citation

Publish with us

Policies and ethics