Skip to main content

Free Vibration of Stiffened Functionally Graded Porous Cylindrical Shell Under Various Boundary Conditions

  • Conference paper
  • First Online:
Modern Mechanics and Applications

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This paper presents an analytical approach to analyze the free vibration of stiffened cylindrical shells made of porous functionally graded (FGP) materials. The governing equations are derived by using Hamilton’s principle based on the first-order shear deformation theory (FSDT) in conjunction with Lekhnitsky smeared technique. Two types of porosity distributions including symmetric and non-symmetric are considered. Applying the Galerkin method and the axial displacement field functions, the natural frequencies of the cylindrical shell under different boundary conditions are determined. The accuracy of the present formulation is made by comparing the obtained results with those available in published reports. The influences of material parameters such as porosity coefficient, porosity distribution types, and shell geometrical parameters on the natural frequencies are investigated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tran, T.T., Pham, Q.-H., Nguyen-Thoi, T.: Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method. Defence Technol. (2020)

    Google Scholar 

  2. Salehipour, H., Shahsavar, A., Civalek, O.: Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges. Compos. Struct. 221, 110842 (2019)

    Google Scholar 

  3. Salehipour, H., et al.: Static deflection and free vibration analysis of functionally graded and porous cylindrical micro/nano shells based on the three-dimensional elasticity and modified couple stress theories. Mech. Based Des. Struct. Mach. 2020, 1–22 (2020)

    Google Scholar 

  4. Ghadiri, M., SafarPour, H.: Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J. Therm. Stresses 40(1), 55–71 (2017)

    Article  Google Scholar 

  5. Wang, Y., Wu, D.: Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp. Sci. Technol. 66, 83–91 (2017)

    Article  Google Scholar 

  6. Li, H., et al.: Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory. Thin-Walled Struct. 144, 106331 (2019)

    Google Scholar 

  7. Li, H., et al.: Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Compos. B Eng. 164, 249–264 (2019)

    Article  Google Scholar 

  8. Zhao, J., et al.: A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions. Compos. B Eng. 156, 406–424 (2019)

    Article  Google Scholar 

  9. Zhao, J., et al.: Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Compos. B Eng. 157, 219–238 (2019)

    Article  Google Scholar 

  10. Li, Z., et al.: The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials. Int. J. Mech. Sci. 182, 105779 (2020)

    Google Scholar 

  11. Bahmyari, E., et al.: Vibration analysis of thin plates resting on Pasternak foundations by element free Galerkin method. Shock. Vib. 20(2), 309–326 (2013)

    Article  Google Scholar 

  12. Damnjanović, E., Marjanović, M., Nefovska-Danilović, M.: Free vibration analysis of stiffened and cracked laminated composite plate assemblies using shear-deformable dynamic stiffness elements. Compos. Struct. 180, 723–740 (2017)

    Article  Google Scholar 

  13. Duc, N.D.: Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory. Eur. J. Mech. A/Solids 58, 10–30 (2016)

    Article  MathSciNet  Google Scholar 

  14. Qin, X., et al.: Static and dynamic analyses of isogeometric curvilinearly stiffened plates. Appl. Math. Model. 45, 336–364 (2017)

    Article  MathSciNet  Google Scholar 

  15. Mustafa, B., Ali, R.: An energy method for free vibration analysis of stiffened circular cylindrical shells. Comput. Struct. 32(2), 355–363 (1989)

    Article  Google Scholar 

  16. Lee, Y., Kim, D.: A study on the optimization of the stiffened cylindrical shell. Trans. KSME 13(2), 205–212 (1989)

    Google Scholar 

  17. Tu, T.M., Loi, N.V.: Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners. Latin Am. J. Solids Struct. 13(15), 2952–2969 (2016)

    Article  Google Scholar 

  18. Tran, M.-T., et al.: Free vibration of stiffened functionally graded circular cylindrical shell resting on Winkler–Pasternak foundation with different boundary conditions under thermal environment. Acta Mechanica (2020)

    Google Scholar 

  19. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    Google Scholar 

  20. Lam, K., Loy, C.: Influence of boundary conditions for a thin laminated rotating cylindrical shell. Compos. Struct. 41(3–4), 215–228 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant No. 107.02-2018.322). The financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu Van Tham .

Editor information

Editors and Affiliations

Appendix A

Appendix A

$$ \begin{array}{*{20}l} {\chi _{{11}} = \bar{A}_{{11}} \frac{{\partial ^{2} }}{{\partial x^{2} }} + \bar{A}_{{66}} \frac{{\partial ^{2} }}{{R^{2} \partial \theta ^{2} }};\;\;\chi _{{12}} = \frac{{\bar{A}_{{12}} + \bar{A}_{{66}} }}{R}\frac{{\partial ^{2} }}{{\partial x\partial \theta }};\;\;\chi _{{13}} = \bar{A}_{{12}} \frac{\partial }{{R\partial x}};\;\;\chi _{{14}} = \bar{B}_{{11}} \frac{{\partial ^{2} }}{{\partial x^{2} }} + \bar{B}_{{66}} \frac{{\partial ^{2} }}{{R^{2} \partial \theta ^{2} }};} \hfill \\ {\chi _{{15}} = \frac{{\bar{B}_{{12}} + \bar{B}_{{66}} }}{R}\frac{{\partial ^{2} }}{{\partial x\partial \theta }};} \hfill \\ {\chi _{{21}} = \chi _{{12}} ;\;\;\chi _{{22}} = \bar{A}_{{66}} \frac{{\partial ^{2} }}{{\partial x^{2} }} + \bar{A}_{{22}} \frac{{\partial ^{2} }}{{R^{2} \partial \theta ^{2} }} - k_{s} \frac{{\bar{A}_{{44}} }}{{R^{2} }};\;\;\chi _{{23}} = \left( {\bar{A}_{{22}} + k_{s} \bar{A}_{{44}} } \right)\frac{\partial }{{R^{2} \partial \theta }};} \hfill \\ {\chi _{{24}} = \left( {\bar{B}_{{12}} + \bar{B}_{{66}} } \right)\frac{{\partial ^{2} }}{{R\partial x\partial \theta }};\;\;\chi _{{25}} = \bar{B}_{{66}} \frac{{\partial ^{2} }}{{\partial x^{2} }} + \bar{B}_{{22}} \frac{{\partial ^{2} }}{{R^{2} \partial \theta ^{2} }} + k_{s} \frac{{\bar{A}_{{44}} }}{R};} \hfill \\ {\chi _{{31}} = - \chi _{{13}} ;\;\;\chi _{{32}} = - \chi _{{23}} ;} \hfill \\ {\chi _{{33}} = k_{s} \bar{A}_{{55}} \frac{{\partial ^{2} }}{{\partial x^{2} }} + \frac{{k_{s} \bar{A}_{{44}} }}{{R^{2} }}\frac{{\partial ^{2} }}{{\partial \theta ^{2} }} - \frac{{\bar{A}_{{22}} }}{{R^{2} }};\;\;\chi _{{34}} = \left( {k_{s} \bar{A}_{{55}} - \frac{{\bar{B}_{{12}} }}{R}} \right)\frac{\partial }{{\partial x}};\;\;\chi _{{35}} = \left( {k_{s} \bar{A}_{{44}} - \frac{{\bar{B}_{{22}} }}{R}} \right)\frac{\partial }{{R\partial \theta }};} \hfill \\ {\chi _{{41}} = \chi _{{14}} ;\;\;\chi _{{42}} = \chi _{{24}} ;\;\;\chi _{{43}} = - \chi _{{34}} ;\;\;\chi _{{44}} = \bar{D}_{{11}} \frac{{\partial ^{2} }}{{\partial x^{2} }} - k_{s} \bar{A}_{{55}} + \bar{D}_{{66}} \frac{{\partial ^{2} }}{{R^{2} \partial \theta ^{2} }};\;\;\chi _{{45}} = \frac{{\bar{D}_{{12}} + \bar{D}_{{66}} }}{R}\frac{{\partial ^{2} }}{{\partial x\partial \theta }};} \hfill \\ {\chi _{{51}} = \chi _{{15}} ;\;\;\chi _{{52}} = \chi _{{25}} ;\;\;\chi _{{53}} = - \chi _{{35}} ;\;\;\chi _{{54}} = - \chi _{{45}} ;\;\;\chi _{{55}} = \bar{D}_{{66}} \frac{{\partial ^{2} }}{{\partial x^{2} }} - k_{s} \bar{A}_{{44}} + \bar{D}_{{22}} \frac{{\partial ^{2} }}{{R^{2} \partial \theta ^{2} }}} \hfill \\ \end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quoc, T.H., Van Tham, V., Tu, T.M. (2022). Free Vibration of Stiffened Functionally Graded Porous Cylindrical Shell Under Various Boundary Conditions. In: Tien Khiem, N., Van Lien, T., Xuan Hung, N. (eds) Modern Mechanics and Applications. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3239-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3239-6_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3238-9

  • Online ISBN: 978-981-16-3239-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics