Skip to main content

Role of Dyslipidemia in Atherosclerosis

  • Chapter
  • First Online:
Stroke Revisited: Dyslipidemia in Stroke

Part of the book series: Stroke Revisited ((STROREV))

Abstract

Atherosclerosis is a complex inflammatory disease characterized by lipid accumulation within the artery walls. It produces the narrowing of arteries due to the development of intimal plaques. The formation of plaques involves the deposition of small cholesterol crystals in the intima and its underlying smooth muscle. The growth of plaques starts with the proliferation of fibrous tissues and the surrounding smooth muscle producing a bulge inside the arteries. It results in reduction of the blood flow to the heart leading to cardiovascular disease, the leading cause of mortality and morbidity worldwide. Atherosclerosis and cardiovascular disease are not only accompanied by increased levels of cholesterol, cholesterol metabolites, and trimethylamine N-oxide levels in the blood, but also by the involvement of the immune system, which is made up of many cell types, hundreds of bioactive cytokines and chemokines (TNF-α, IL-1β, IL-6, MCP-1), and millions of different antigens. This makes the development of atherosclerosis very challenging. In addition to the development of myocardial infarctions, atherosclerosis is also associated with peripheral artery disease. This pathological condition is also accompanied by different stages of atherogenesis, dyslipidemia, hypertension, oxidative stress, endothelial dysfunction, and inflammation. At the molecular level, these processes involve the generation of reactive oxygen species, reduction in redox status, and increased expression of pro-inflammatory cytokines and chemokines. These mediators can be used as biomarkers for cardiovascular disease, as well as peripheral artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shah PK, Lecis D (2019) Inflammation in atherosclerotic cardiovascular disease. F1000Res. 8:F1000 faculty Rev-1402.

    Google Scholar 

  2. Rafieian-Kopaei M, Setorki M, Doudi M, et al. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5:927–46.

    PubMed  PubMed Central  Google Scholar 

  3. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.

    Article  Google Scholar 

  4. Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372:1333–41.

    Article  CAS  Google Scholar 

  5. Mendelsohn AR, Larrick JW. Dietary modification of the microbiome affects risk for cardiovascular disease. Rejuvenation Res. 2013;16:241–4.

    Article  CAS  Google Scholar 

  6. Das M, Das DK. Resveratrol and cardiovascular health. Mol Asp Med. 2010;31:503–12.

    Article  CAS  Google Scholar 

  7. Loftus I. In: Fitridge R, Thompson M, editors. Mechanisms of vascular disease in a reference book for vascular specialists (internet). Adelaide, Australia: University of Adelaide Press; 2011.

    Google Scholar 

  8. Ahotupa M. Oxidized lipoprotein lipids and atherosclerosis. Free Radic Res. 2017;51:439–47.

    Article  CAS  Google Scholar 

  9. Zmysłowski A, Szterk A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Clin Chim Acta. 2019;491:103–13.

    Article  Google Scholar 

  10. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation. 2003;108:1664–72.

    Article  Google Scholar 

  11. Loftus IM, Naylor AR, Goodall S, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke. 2000;31:40–7.

    Article  CAS  Google Scholar 

  12. Casscells W, Naghavi M, Willerson JT. Vulnerable atherosclerotic plaque: a multifocal disease. Circulation. 2003;107:2072–5.

    Article  Google Scholar 

  13. Liu Y, Yu H, Zhang Y, et al. TLRs are important inflammatory factors in atherosclerosis and may be a therapeutic target. Med Hypotheses. 2008;70:314–6.

    Article  CAS  Google Scholar 

  14. Kockx MM, Herman AG. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res. 2000;45:736–46.

    Article  CAS  Google Scholar 

  15. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352:1685–95.

    Article  CAS  Google Scholar 

  16. Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  Google Scholar 

  17. Scioli MG, Storti G, D’Amico F, et al. Oxidative stress and new Pathogenetic mechanisms in endothelial dysfunction: potential diagnostic biomarkers and therapeutic targets. J Clin Med. 2020;9:1995.

    Article  CAS  Google Scholar 

  18. Ellulu MS, Patimah I, Khaza’ai H, et al. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacol. 2016;24:1–10.

    Article  CAS  Google Scholar 

  19. Townsend MK, Aschard H, De Vivo I, et al. Genomics, telomere length, epigenetics, and metabolomics in the nurses’, health studies. Am. J. Public Health. 2016;106:1663–8.

    Google Scholar 

  20. Ma J, Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmcol. 2018;9:1082.

    Article  CAS  Google Scholar 

  21. Farooqui AA. High calorie diet and the human brain. New York: Springer; 2015.

    Book  Google Scholar 

  22. Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res. 2003;92:785–92.

    Article  CAS  Google Scholar 

  23. Qi X, Qin L, Du R, et al. Lipopolysaccharide upregulated intestinal epithelial cell expression of Fn14 and activation of Fn14 signaling amplify intestinal TLR4-mediated inflammation. Front Cell Infect Microbiol. 2017;7:315.

    Article  Google Scholar 

  24. Ahmadmehrabi S, Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32:761–6.

    Article  Google Scholar 

  25. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.

    Article  CAS  Google Scholar 

  26. Krishna SM, Moxon JV, Golledge J. A review of the pathophysiology and potential biomarkers for peripheral artery disease. Int J Mol Sci. 2015;16:11294–322.

    Article  CAS  Google Scholar 

  27. Signorelli SS, Scuto S, Marino E, Xourafa A, Gaudio A. Oxidative stress in peripheral arterial disease (PAD) mechanism and biomarkers. Antioxidants (Basel). 2019;8:367.

    Article  CAS  Google Scholar 

  28. Ismaeel A, Papoutsi E, Miserlis D, et al (2020) The nitric oxide system in peripheral artery disease: connection with oxidative stress and Biopterins. Antioxidants (Basel). 9:590.

    Google Scholar 

  29. Green DJ, Dawson EA, Groenewoud HM, Jones H, Thijssen DH. Is flow-mediated dilation nitric oxide mediated? A meta-analysis. Hypertension. 2014;63:376–82.

    Article  CAS  Google Scholar 

  30. Coutinho T, Rooke TW, Kullo IJ. Arterial dysfunction and functional performance in patients with peripheral artery disease: a review. Vasc Med. 2011;16:203–11.

    Article  Google Scholar 

  31. Gokce N, Keaney JF Jr, Hunter LM, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41:1769–75.

    Article  Google Scholar 

  32. Steven S, Daiber A, Dopheide JF, et al. Peripheral artery disease, redox signaling, oxidative stress-basic and clinical aspects. Redox Biol. 2017;12:787–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farooqui, A.A. (2021). Role of Dyslipidemia in Atherosclerosis. In: Lee, SH., Kang, M.K. (eds) Stroke Revisited: Dyslipidemia in Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-16-3923-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3923-4_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3922-7

  • Online ISBN: 978-981-16-3923-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics