Skip to main content

Signalling of Rhizosphere Microbiomes: Benign and Malign Borders

  • Chapter
  • First Online:
Microbial BioTechnology for Sustainable Agriculture Volume 1

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 33))

Abstract

In the course of evolution, symbiotic relationship is the most prominent and practical depiction of the term ‘survival of the fittest’. Symbiosis is a long-term biological interaction between two distinct organisms and can be classified as mutualistic, parasitic and commensalism. Plant-microbiome and microbe-microbe interactions are the two most crucial symbiotic relationships in the biosphere that play an important regulatory role in crop production, plant development and growth, resistance against plant pathogens, value-added metabolites production, etc. The rhizosphere is the hotspot of such symbiotic interactions where soil microbes influence the physiological and biochemical expressions of the host plants by secreting metabolites, and, simultaneously, plant roots also discharge several different kinds of chemical molecules that affect the cellular expression of the neighbouring microbes. Metabolic expressions of both microbes and plants are critically regulated by each other and induced by different kinds of biotic and abiotic stresses. However, the rhizosphere of different plants houses the same or different kinds of microbial communities, and they have been found to respond uniformly or differently to the same or different types of stresses. Concisely, the existence of the living entities in the planet depends on the synchronized interkingdom symbiosis where plant and rhizomicrobiome play a key regulatory role. Therefore, detailed insight into the rhizospheric symbiosis is essentially needed to understand this interplay at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ab Rahman SFS, Singh E, Pieterse CM et al (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  Google Scholar 

  • Abdel Latef AAH, Omer AM, Badawy AA et al (2021) Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants 10:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alaylar B, Egamberdieva D, Gulluce M, Karadayi M, Arora NK (2020) Integration of molecular tools in microbial phosphate solubilization research in agriculture perspective. World J Microbiol Biotechnol 36(7):93

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Mishra A, Jha B (2019) Halotolerant rhizobacteria: a promising probiotic for saline soil-based agriculture. In: Kumar M, Etesami H, Kumar V (eds) Saline soil-based agriculture by halotolerant microorganisms. Springer, Singapore, pp 53–73

    Chapter  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L et al (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian V, Sur A, Nayak KK et al (2020) Plant root exudates as determinant of Rhizomicrobiome. In: Sharma SK, Singh UB, Sahu PK, Singh HV, Sharma PK (eds) Rhizosphere microbes. Microorganisms for sustainability, vol 23. Springer, Singapore, pp 105–126

    Chapter  Google Scholar 

  • Balasundararajan V, Dananjeyan B (2019) Occurrence of diversified N-acyl homoserine lactone mediated biofilm-forming bacteria in rice rhizoplane. J Basic Microbiol 59:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Basso V, Kohler A, Miyauchi S et al (2020) An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. Plant Cell Environ 43:1047–1068

    Article  CAS  PubMed  Google Scholar 

  • Baylan O (2012) An opportunistic pathogen frequently isolated from immunocompromised patients: Burkholderia cepacia complex. Mikrobiyol Bul 46:304–318

    PubMed  Google Scholar 

  • Bécard G (2017) How plants communicate with their biotic environment, vol 82, 1st edn. Academic Press, New York, p 404

    Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H et al (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. Pisi in grapevine cell suspensions. J Exp Bot 62:595–603

    Article  CAS  PubMed  Google Scholar 

  • Calatrava-Morales N, McIntosh M, Soto MJ (2018) Regulation mediated by N-acyl homoserine lactone quorum sensing signals in the rhizobium-legume symbiosis. Gene 9:263

    Article  CAS  Google Scholar 

  • Cardarelli M, Rouphael Y, Kyriacou MC et al (2020) Augmenting the sustainability of vegetable cropping systems by configuring rootstock-dependent rhizomicrobiomes that support plant protection. Agronomy 10:1185

    Article  CAS  Google Scholar 

  • Castillejo MÁ, Fernández-Aparicio M, Rubiales D (2019) Characterization of defense mechanisms to parasitic plants in the model Medicago truncatula. In: Bruijn FD (ed) The model legume Medicago truncatula. Wiley, Hoboken, NJ, pp 378–383

    Google Scholar 

  • Chagas FO, de Cassia PR, Caraballo-Rodríguez AM et al (2018) Chemical signaling involved in plant–microbe interactions. Chem Soc Rev 47:1652–1704

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang J, Yang N et al (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:1–14

    CAS  Google Scholar 

  • Clear MR, Hom EF (2019) The evolution of symbiotic plant–microbe signalling. Annu Plant Rev Online:785–836

    Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  • Compant S, Samad A, Faist H et al (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Silva NI, Brooks S, Lumyong S et al (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148

    Article  Google Scholar 

  • Dekimpe V, Deziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155:712–723

    Article  CAS  PubMed  Google Scholar 

  • Dhanker R, Chaudhary S, Kumari A et al (2020) Symbiotic signaling: insights from arbuscular mycorrhizal symbiosis. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe symbiosis. Springer, Cham, pp 75–103

    Chapter  Google Scholar 

  • Dixit S, Shukla A, Upadhyay SK et al (2019) Mode of communication between plants during environmental stress. In: Singh S, Upadhyy S, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Energy, environment, and sustainability. Springer, Singapore, pp 127–147

    Google Scholar 

  • Feng F, Sun J, Radhakrishnan GV et al (2019) A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat Commun 10:1–12

    Article  CAS  Google Scholar 

  • Foo E, Plett JM, Lopez-Raez JA et al (2019) The role of plant hormones in plant-microbe symbioses. Front Plant Sci 10:1391

    Article  PubMed  PubMed Central  Google Scholar 

  • Franchi E, Rolli E, Marasco R et al (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soil Sediment 17:1224–1236

    Article  CAS  Google Scholar 

  • Gkizi D, Lehmann S, L’Haridon F et al (2016) The innate immune signaling system as a regulator of disease resistance and induced systemic resistance activity against Verticillium dahliae. Mol Plant Microbe Interact 29:313–323

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Bar M (2020) Plant immunity, priming, and systemic resistance as mechanisms for Trichoderma spp. biocontrol. In: Sharma A, Sharma P (eds) Trichoderma. Rhizosphere biology. Springer, Singapore, pp 81–110

    Google Scholar 

  • Gupta S, Chaturvedi P, Kulkarni MG et al (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462

    Article  CAS  PubMed  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Google Scholar 

  • Huang C (2020) Extensively drug-resistant Alcaligenes faecalis infection. BMC Infect Dis 20:1–11

    Article  Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF et al (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Huedo P, Coves X, Daura X et al (2018) Quorum sensing signaling and quenching in the multidrug-resistant pathogen Stenotrophomonas maltophilia. Front Cell Infect Microbiol 8:122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha Y (2019) Endophytic bacteria as a modern tool for sustainable crop management under stress. In: Giri B, Prasad R, Wu QS, Varma A (eds) Biofertilizers for sustainable agriculture and environment. Soil biology, vol 55. Springer, Cham, pp 203–223

    Chapter  Google Scholar 

  • Jha Y (2020) Plant microbiomes with phytohormones: attribute for plant growth and adaptation under the stress conditions. In: Yadav A, Rastegari A, Yadav N, Kour D (eds) Advances in plant microbiome and sustainable agriculture. Microorganisms for sustainability, vol 20. Springer, Singapore, pp 85–103

    Chapter  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Jiang Y, Xie Q, Wang W et al (2018) Medicago AP2-domain transcription factor WRI5a is a master regulator of lipid biosynthesis and transfer during mycorrhizal symbiosis. Mol Plant 11:1344–1359

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Kaliaperumal S, Srinivasan R, Gupta A et al (2006) Postoperative endophthalmitis due to an unusual pathogen: Alcaligenes faecalis. Eye 20:968–969

    Article  CAS  PubMed  Google Scholar 

  • Kamle M, Borah R, Bora H et al (2020) Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Hesham AL, Upadhyay R, Sharma G, Manoharachary C, Gupta V (eds) Fungal biotechnology and bioengineering. Fungal biology. Springer, Cham, pp 457–470

    Chapter  Google Scholar 

  • Kouzai Y, Kimura M, Yamanaka Y et al (2016) Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon. BMC Plant Biol 16:1–11

    Article  CAS  Google Scholar 

  • Kumar A, Munder A, Aravind R et al (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15:764–779

    Article  CAS  PubMed  Google Scholar 

  • Kumawat K, Sharma P, Sirari A et al (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp.(LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol 35:1–17

    Article  CAS  Google Scholar 

  • Kundan R, Pant G, Jadon N et al (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:9

    Article  Google Scholar 

  • Kurokawa M, Nakano M, Kitahata N et al (2021) An efficient direct screening system for microorganisms that activate plant immune responses based on plant–microbe interactions using cultured plant cells. Sci Rep 11:1–14

    Article  CAS  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Qasim M, Hussain M et al (2017) The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi. Sci Rep 7:1–11

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063

    Article  CAS  Google Scholar 

  • Manpoong C, De Mandal S, Bangaruswamy DK et al (2020) Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene 23:100625

    Article  Google Scholar 

  • Marschner P (2012) Rhizosphere biology. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizoshere. Soil biology, vol 7. Springer, Berlin, Heidelberg, pp 369–388

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Matsuoka H, Ohwaki Y, Terakado-Tonooka J et al (2016) Changes in volatiles in carrots inoculated with ACC deaminase-producing bacteria isolated from organic crops. Plant Soil 407:173–186

    Article  CAS  Google Scholar 

  • Maurya AK, Kelly MP, Mahaney SM et al (2018) Arbuscular mycorrhizal symbiosis alters plant gene expression and aphid weight in a tripartite interaction. J Plant Interact 13:294–305

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE et al (2016) Phenylpropanoid defences in Nicotiana tabacum cells: overlapping metabolomes indicate common aspects to priming responses induced by lipopolysaccharides, chitosan and flagellin-22. PLoS One 11:e0151350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE et al (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Milici VR, Dalui D, Mickley JG et al (2020) Responses of plant–pathogen interactions to precipitation: implications for tropical tree richness in a changing world. J Ecol 108:1800–1809

    Article  Google Scholar 

  • Mishra P, Mishra J, Arora NK (2021) Plant growth promoting bacteria for combating salinity stress in plants – recent developments and prospects: a review. Microbiol Res 252:126861

    Article  CAS  PubMed  Google Scholar 

  • Mommer L, Hinsinger P, Prigent-Combaret C et al (2016) Advances in the rhizosphere: stretching the interface of life. Plant Soil 407:1–8

    Article  CAS  Google Scholar 

  • Mukherjee S, Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 17:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller CA, Obermeier MM, Berg G (2016) Bioprospecting plant-associated microbiomes. J Biotechnol 235:171–180

    Article  CAS  PubMed  Google Scholar 

  • Newcombe G, Martin F, Kohler A (2010) Defense and nutrient mutualisms in Populus. In: Jansson S, Bhalerao R, Groover A (eds) Genetics and genomics of Populus. Plant genetics and genomics: crops and models, vol 8. Springer, New York, NY, pp 247–277

    Chapter  Google Scholar 

  • Nguvo KJ, Gao X (2019) Weapons hidden underneath: bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases. J Plant Dis Prot 126:177–190

    Article  Google Scholar 

  • Oleńska E, Małek W, Wójcik M et al (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ:140682

    Google Scholar 

  • Olowe OM, Akanmu AO, Asemoloye MD (2020) Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Ann Appl Biol 177:282–293

    Article  Google Scholar 

  • Overstreet RM, Lotz JM (2016) Host–symbiont relationships: understanding the change from guest to pest. In: Hurst C (ed) The Rasputin effect: when commensals and symbionts become parasitic. Advances in environmental microbiology, vol 3. Springer, Cham, pp 27–64

    Chapter  Google Scholar 

  • Padder SA, Prasad R, Shah AH (2018) Quorum sensing: a less known mode of communication among fungi. Microbiol Res 210:51–58

    Article  PubMed  Google Scholar 

  • Paterson A (2013) Genomes of herbaceous land plants, vol 69, 1st edn. Academic Press, Elsevier, London

    Google Scholar 

  • Phour M, Sehrawat A, Sindhu SS et al (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res:126589

    Google Scholar 

  • Prescott JF (1991) Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev 4:20–34

    Google Scholar 

  • Pršić J, Ongena M (2020) Elicitors of plant immunity triggered by beneficial bacteria. Front Plant Sci 11:594530

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu Q, Zhang Z, Peijnenburg W et al (2020) Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem 68:5024–5038

    Article  CAS  PubMed  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA et al (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:1–11

    Article  Google Scholar 

  • Ratet P (2019) Symbiosis signaling: Solanaceae symbiotic LCO receptors are functional for rhizobium perception in legumes. Curr Biol 29:R1312–R1314

    Article  CAS  PubMed  Google Scholar 

  • Raymaekers K, Ponet L, Holtappels D et al (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240

    Article  CAS  Google Scholar 

  • Rilling JI, Acuña JJ, Sadowsky MJ et al (2018) Putative nitrogen-fixing bacteria associated with the rhizosphere and root endosphere of wheat plants grown in an andisol from southern Chile. Front Microbiol 9:2710

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez PA, Rothballer M, Chowdhury SP et al (2019) Systems biology of plant-microbiome interactions. Mol Plant 12:804–821

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Rojas FU, López-Sánchez D, Meza-Radilla G et al (2018) The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Rev Argent Microbiol 51:84–92

    PubMed  Google Scholar 

  • Sah S, Singh N, Singh R (2017) Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech 7:1–7

    Article  CAS  Google Scholar 

  • Saijo Y, Loo EP, Yasuda S (2018) Pattern recognition receptors and signaling in plant–microbe interactions. Plant J 93:592–613

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto K, Ogiwara N, Kaji T et al (2019) Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. J Plant Res 132:541–568

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Rovenich H, Jeena G et al (2019) The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. New Phytol 224:886–901

    Article  CAS  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B et al (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Shastri B, Kumar R (2019) Microbial secondary metabolites and plant–microbe communications in the rhizosphere. In: Singh JS (ed) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 93–111

    Chapter  Google Scholar 

  • Shi S, Tian L, Ma L et al (2018) Community structure of rhizomicrobiomes in four medicinal herbs and its implication on growth management. Microbiology 87:425–436

    Article  CAS  Google Scholar 

  • Shi S, Chang J, Tian L et al (2019) Comparative analysis of the rhizomicrobiome of the wild versus cultivated crop: insights from rice and soybean. Arch Microbiol 201:879–888

    Article  CAS  PubMed  Google Scholar 

  • Sindhu SS, Phour M, Choudhary SR et al (2014) Phosphorus cycling: prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants. In: Parmar N (ed) Geomicrobiology and biogeochemistry. Soil biology, vol 39. Springer, Berlin, Heidelberg, pp 199–237

    Chapter  Google Scholar 

  • Singh JS (2019) New and future developments in microbial biotechnology and bioengineering: microbes in soil, crop and environmental sustainability. Elsevier, Amsterdam

    Google Scholar 

  • Singha LP, Sinha N, Pandey P (2018) Rhizoremediation prospects of polyaromatic hydrocarbon degrading rhizobacteria, that facilitate glutathione and glutathione-S-transferase mediated stress response, and enhance growth of rice plants in pyrene contaminated soil. Ecotoxicol Environ Saf 164:579–588

    Article  CAS  PubMed  Google Scholar 

  • Stephens K, Bentley WE (2020) Synthetic biology for manipulating quorum sensing in microbial consortia. Trends Microbiol 28(8):633–643

    Article  CAS  PubMed  Google Scholar 

  • Sunita K, Mishra I, Mishra J, Prakash J, Arora NK (2020) Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Front Microbiol 11:567768

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian L, Zhou X, Ma L et al (2017) Root-associated bacterial diversities of Oryza rufipogon and Oryza sativa and their influencing environmental factors. Arch Microbiol 199:563–571

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Chang J, Shi S et al (2020a) Comparison between wild and related cultivated rice species reveals strong impacts of crop domestication on methane metabolism of the rhizomicrobiome. Res Squ. https://doi.org/10.21203/rs.3.rs-28865/v1

  • Tian L, Shi S, Ma L et al (2020b) Community structures of the rhizomicrobiomes of cultivated and wild soybeans in their continuous cropping. Microbiol Res 232:126390

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Reverdy A, She Q et al (2020c) The role of rhizodeposits in shaping rhizomicrobiome. Environ Microbiol Rep 12:160–172

    Article  PubMed  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:1–10

    Article  CAS  Google Scholar 

  • van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–265

    Article  CAS  PubMed  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Sobti RC, Arora NK, Kothari R (eds) Environmental biotechnology: for sustinable future. Springer, Singapore, pp 129–173

    Chapter  Google Scholar 

  • Vigneron N, Radhakrishnan GV, Delaux P-M (2018) What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis? Curr Opin Plant Biol 44:49–56

    Article  PubMed  Google Scholar 

  • Vishwakarma K, Kumar N, Shandilya C et al (2020) Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: a review. Front Microbiol 11:3195

    Article  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanes ML, Bajsa N (2016) Fluorescent Pseudomonas: a natural resource from soil to enhance crop growth and health. In: Castro-Sowinski S (ed) Microbial models: from environmental to industrial sustainability. Microorganisms for sustainability, vol 1. Springer, Singapore, pp 323–349

    Chapter  Google Scholar 

  • Ye T, Zhou T, Li Q et al (2020) Cupriavidus sp. HN-2, a novel quorum quenching bacterial isolate, is a potent biocontrol agent against Xanthomonas campestris pv. Campestris. Microorganisms 8:45

    Google Scholar 

  • Yuan M, Huang Y, Ge W et al (2019) Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 20:1–13

    Article  Google Scholar 

  • Zaidi A, Khan MS, Saif S et al (2017) Role of nitrogen-fixing plant growth-promoting rhizobacteria in sustainable production of vegetables: current perspective. In: Zaidi A (ed) Microbial strategies for vegetable production. Springer, Cham, pp 49–79

    Chapter  Google Scholar 

Download references

Acknowledgements

None. No funding to declare.

Conflict of Interest: The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, S., Baksi, S. (2022). Signalling of Rhizosphere Microbiomes: Benign and Malign Borders. In: Arora, N.K., Bouizgarne, B. (eds) Microbial BioTechnology for Sustainable Agriculture Volume 1. Microorganisms for Sustainability, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-16-4843-4_7

Download citation

Publish with us

Policies and ethics