Skip to main content

Engineering Challenges of Carbon Dioxide Capture and Sequestration by Cyanobacteria

  • Chapter
  • First Online:
Ecophysiology and Biochemistry of Cyanobacteria

Abstract

Cyanobacterial strains (also known as blue-green microalgae) have been applied to sequester CO2 because of their high efficient bioconversion into biomass. The system is extremely complex and needs understanding and knowledge about many subsystems such as synthesis and further extraction of biomolecules—proteins, carbohydrates, lipids, and high-value products. Carbon dioxide sequestration by using cyanobacteria requires special engineering specifications such as the design of photobioreactors (PBRs), cultivation techniques under different working conditions, etc. The strain tolerance to the high CO2 concentrations, which are available in waste gases (e.g., flue gas up to 20% and biogas up to 45%) is considered especially important. All other key control parameters of the system are light intensity, temperature, pH, and inoculum size. Maximization of CO2 sequestration and maximum productivity of biomass and valuable metabolites are not easy tasks. Many advanced approaches and innovative constructions of PBRs are recently designed based on computational fluid dynamics software. This very powerful tool opens new opportunities and perspectives to robustly study hydrodynamics, algal behavior, and kinetics under dynamic changes of fluid movement. On the other hand, the microalgae kinetics of cyanobacteria is fundamental for the success of the overall process. Hence, the present book chapter discusses the complex approach of modeling and analysis of the system by starting with medium optimization and going through many steps up to scaling up the process and PBRs in order to help society to reach a better and greener world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acién Fernández FG, García Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. In: Osinga R, Tramper J, Burgess JG et al (eds) . Elsevier, Progress in industrial microbiology, pp 231–247

    Google Scholar 

  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56(8):2721–2732

    Article  Google Scholar 

  • Adamu A, Russo-Abegão F, Boodhoo K (2020) Process intensification technologies for CO2 capture and conversion – a review. BMC Chem Eng 2(1):2

    Article  Google Scholar 

  • Adedoyin FF, Zakari A (2020) Energy consumption, economic expansion, and CO2 emission in the UK: the role of economic policy uncertainty. Sci Total Environ 738:140014

    Article  CAS  Google Scholar 

  • Ali Kubar A, Cheng J, Guo W, Kumar S, Song Y (2020) Development of a single helical baffle to increase CO2 gas and microalgal solution mixing and Chlorella PY-ZU1 biomass yield. Bioresour Technol 307:123253

    Article  CAS  Google Scholar 

  • Amaral MS, Loures CCA, Silva MB, Prata AMR (2020a) Adjustment of the operational parameters of an unconventional integrated and illuminated Internally Photobioreactor (ILI-PBR) for the batch autotrophic cultivation of the Chlorella minutissima, using the Taguchi method. Appl Biochem Biotechnol 191(1):245–257

    Article  CAS  Google Scholar 

  • Amaral MS, Loures CCA, Naves FL, Baeta BEL, Silva MB, Prata AMR (2020b) Evaluation of cell growth performance of microalgae Chlorella minutissima using an internal light integrated photobioreactor. J Environ Chem Eng 8(5):104200

    Article  CAS  Google Scholar 

  • An J-Y, Kim B-W (2000) Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. J Biotechnol 80(1):35–44

    Article  CAS  Google Scholar 

  • An J, Middleton RS, Li Y (2019) Environmental performance analysis of cement production with CO2 capture and storage technology in a life-cycle perspective. Sustainability 11(9):2626

    Article  Google Scholar 

  • Arata S, Strazza C, Lodi A, Del Borghi A (2013) Spirulina platensis culture with flue gas feeding as a cyanobacteria-based carbon sequestration option. Chem Eng Technol 36(1):91–97

    Article  CAS  Google Scholar 

  • Ayittey FK, Obek CA, Saptoro A, Perumal K, Wong MK (2020) Process modifications for a hot potassium carbonate-based CO2 capture system: a comparative study. Greenhouse Gases: Sci Technol 10(1):130–146

    Article  CAS  Google Scholar 

  • Beecy DJ, Kuuskraa VA (2001) Status of U.S. Geologic Carbon Sequestration Research and Technology. Environ Geosci 8(3):152–159

    Article  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38:S475–S479

    Article  CAS  Google Scholar 

  • Borhani TN, Wang M (2019) Role of solvents in CO2 capture processes: the review of selection and design methods. Renew Sust Energ Rev 114:109299

    Article  CAS  Google Scholar 

  • Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89(5):1275–1288

    Article  CAS  Google Scholar 

  • Cheng W, Huang J, Chen J (2016) Computational fluid dynamics simulation of mixing characteristics and light regime in tubular photobioreactors with novel static mixers. J Chem Technol Biotechnol 91(2):327–335

    Article  CAS  Google Scholar 

  • Cheng J, Lai X, Ye Q, Guo W, Zhou J (2020) Numerical simulation on optimizing flow field and flashing-light effect in jet-aerated tangential swirling-flow plate photobioreactor to improve microalgal growth. Chem Eng Sci 215:115371

    Article  CAS  Google Scholar 

  • Cui X, Yang J, Feng Y, Zhang W (2020) Simulation of a novel tubular microalgae photobioreactor with aerated tangent inner tubes: improvements in mixing performance and flashing-light effects. Archaea (Vancouver, BC) 2020:8815263

    Google Scholar 

  • Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94

    Article  CAS  Google Scholar 

  • Diaz JP, Inostroza C, Acien FG (2021) Scale-up of a Fibonacci-type photobioreactor for the production of Dunaliella salina. Appl Biochem Biotechnol 193(1):188–204

    Article  CAS  Google Scholar 

  • Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013: a review. ACS Appl Mater Interfaces 7(4):2137–2148

    Article  CAS  Google Scholar 

  • Dye D, Muhs J, Wood B, Sims R (2011) Design and performance of a solar photobioreactor utilizing spatial light dilution. J Solar Energy Eng 133(1)

    Google Scholar 

  • Eloka-Eboka AC, Bwapwa JK, Maroa S (2019) Biomass for CO2 sequestration. In: Hashmi S, Choudhury IA (eds) Encyclopedia of renewable and sustainable materials. Elsevier, Oxford, pp 277–290

    Google Scholar 

  • Garcia M, Berghout N (2019) Toward a common method of cost-review for carbon capture technologies in the industrial sector: cement and iron and steel plants. Int J Greenhouse Gas Control 87:142–158

    Article  CAS  Google Scholar 

  • Gardarsdottir SO, De Lena E, Romano M, Roussanaly S, Voldsund M, Pérez-Calvo J-F, Berstad D, Fu C, Anantharaman R, Sutter D et al (2019) Comparison of technologies for CO2 capture from cement production-Part 2: Cost analysis. Energies 12:542

    Article  CAS  Google Scholar 

  • Gómez-Pérez CA, Espinosa J, Montenegro Ruiz LC, van Boxtel AJB (2015) CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters. Algal Res 12:1–9

    Article  Google Scholar 

  • Gonçalves VD, Fagundes-Klen MR, Goes Trigueros DE, Kroumov AD, Módenes AN (2019a) Statistical and optimization strategies to carotenoids production by Tetradesmus acuminatus (LC192133.1) cultivated in photobioreactors. Biochem Eng J 152:107351

    Article  Google Scholar 

  • Gonçalves VD, Fagundes-Klen MR, Trigueros DEG, Schuelter AR, Kroumov AD, Módenes AN (2019b) Combination of Light Emitting Diodes (LEDs) for photostimulation of carotenoids and chlorophylls synthesis in Tetradesmus sp. Algal Res 43:101649

    Article  Google Scholar 

  • Guandalini G, Romano MC, Ho M, Wiley D, Rubin ES, Abanades JC (2019) A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. Int J Greenhouse Gas Control 84:219–231

    Article  CAS  Google Scholar 

  • Guo W, Cheng J, Song Y, Kumar S, Ali KA, Wang Y, Li X, Yang W (2020) Improving flashing light frequency and CO2 fixation rate with vortex movement of algal cells in raceway pond with conic baffles. Chem Eng Sci 216:115536

    Article  CAS  Google Scholar 

  • Harrington L, Foster R (2010). Australian residential building sector greenhouse gas emissions 1990–2010. Final Report, Energy Efficient Strategies. Australian Greenhouse Office

    Google Scholar 

  • Heining M, Buchholz R (2015) Photobioreactors with internal illumination – a survey and comparison. Biotechnol J 10(8):1131–1137

    Article  CAS  Google Scholar 

  • Heldt H-W, Heldt F (2005a) The use of energy from sunlight by photosynthesis is the basis of life on earth. In: Heldt H-W, Heldt F (eds) Plant biochemistry, 3rd edn. Academic Press, Burlington, pp 45–66

    Chapter  Google Scholar 

  • Heldt H-W, Heldt F (2005b) 3 - Photosynthesis is an electron transport process. In: Heldt H-W, Heldt F (eds) Plant biochemistry, 3rd edn. Academic Press, Burlington, pp 67–114

    Chapter  Google Scholar 

  • Herzog H (1999) An introduction to CO2 separation and capture technologies. Energy Laboratory Working Paper Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Herzog HJ (2001) What future for carbon capture and sequestration? Environ Sci Technol 35(7):148a–153a

    Article  CAS  Google Scholar 

  • Hinterholz C, Schuelter A, Módenes AN, Trigueros DE, Borba C, Espinoza-Quiñones F, Kroumov A (2017) Microalgae Flat Plate-Photobioreactor (FP-PBR) system development: computational tools to improve experimental results. Acta Microbiol Bulg 33(3):119–124

    Google Scholar 

  • Hinterholz CL, Trigueros DEG, Modenes AN, Borba CE, Scheufele FB, Schuelter AR, Kroumov AD (2019) Computational fluid dynamics applied for the improvement of a flat-plate photobioreactor towards high-density microalgae cultures. Biochem Eng J 151:107257

    Article  CAS  Google Scholar 

  • Hu J-Y, Sato T (2017) A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energy Convers Manag 133:558–565

    Article  CAS  Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49(6):655–662

    Article  CAS  Google Scholar 

  • Iluz D, Abu-Ghosh S (2016) A novel photobioreactor creating fluctuating light from solar energy for a higher light-to-biomass conversion efficiency. Energy Convers Manag 126:767–773

    Article  CAS  Google Scholar 

  • Jacobi A, Steinweg C, Sastre RR, Posten C (2012) Advanced photobioreactor LED illumination system: Scale-down approach to study microalgal growth kinetics. Eng Life Sci 12(6):621–630

    Article  CAS  Google Scholar 

  • Kajiwara S, Yamada H, Ohkuni N, Ohtaguchi K (1997) Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942. Energy Convers Manag 38:S529–S532

    Article  CAS  Google Scholar 

  • Kandilian R, Pruvost J, Artu A, Lemasson C, Legrand J, Pilon L (2016) Comparison of experimentally and theoretically determined radiation characteristics of photosynthetic microorganisms. J Quant Spectrosc Radiat Transf 175:30–45

    Article  CAS  Google Scholar 

  • Khadim SR, Singh P, Singh AK, Tiwari A, Mohanta A, Asthana RK (2018) Mass cultivation of Dunaliella salina in a flat plate photobioreactor and its effective harvesting. Bioresour Technol 270:20–29

    Article  CAS  Google Scholar 

  • Klinthong W, Yang Y-H, Huang C-H, Tan C-S (2015) A review: microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual Res 15(2):712–742

    Article  CAS  Google Scholar 

  • Kremer G, Vis M, Prudich M, Bayless D, Inventors (2000) Practical photosynthetic carbon dioxide mitigation. USA

    Google Scholar 

  • Kroumov AD, Gacheva G, Iliev I, Alexandrov S, Pilarski P, Petkov G (2013) Analysis of Sf/V ratio of photobioreactors linked with algal physiology. Genet Plant Physiol 3(1–2):55–64

    Google Scholar 

  • Kroumov AD, Módenes AN, Trigueros DEG (2015) A complex theoretical approach for algal medium optimization for CO2 fixation from flue gas. Acta Microbiol Bulg 31(1):61–70

    Google Scholar 

  • Kroumov AD, Modenes AN, Trigueros DEG, Espinoza-Quinones FR, Borba CE, Scheufele FB, Hinterholz CL (2016) A systems approach for CO2 fixation from flue gas by microalgae – theory review. Process Biochem 51(11):1817–1832

    Article  CAS  Google Scholar 

  • Kroumov AD, Scheufele FB, Trigueros DEG, Modenes AN, Zaharieva MM, Najdenski HM (2017) Chapter 11: Modeling and techno-economic analysis of algae for bio-energy and co-products. In: Rastogi (ed) Algal green chemistry: recent progress in biotechnology. Elsevier, pp 202–241

    Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49:3516–3526

    Article  CAS  Google Scholar 

  • Lai Q, Kong L, Gong W, Russell AG, Fan M (2019) Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Appl Energy 254:113696

    Article  CAS  Google Scholar 

  • Lee S-Y, Lee I-B, Han J (2019) Design under uncertainty of carbon capture, utilization and storage infrastructure considering profit, environmental impact, and risk preference. Appl Energy 238:34–44

    Article  Google Scholar 

  • Li J. (2002) On-line state estimation of microalgal photobioreactors [Master of Science in Biosystems Engineering]. University of Hawaii

    Google Scholar 

  • Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447

    Article  CAS  Google Scholar 

  • Li A, Wang J, Bao B (2019) High-efficiency CO2 capture and separation based on hydrate technology: a review. Greenhouse Gases: Sci Technol 9(2):175–193

    Article  CAS  Google Scholar 

  • Lian X, Xu L, Chen M, Wu CE, Li W, Huang B, Cui Y (2019) Carbon dioxide captured by metal organic frameworks and its subsequent resource utilization strategy: a review and prospect. J Nanosci Nanotechnol 19(6):3059–3078

    Article  CAS  Google Scholar 

  • Luzi G, McHardy C, Lindenberger C, Rauh C, Delgado A (2019) Comparison between different strategies for the realization of flashing-light effects – pneumatic mixing and flashing illumination. Algal Res 38:101404

    Article  Google Scholar 

  • Malapascua JR, Ranglova K, Masojídek J (2019) Photosynthesis and growth kinetics of Chlorella vulgaris R-117 cultured in an internally LED-illuminated photobioreactor. Photosynthetica 57(1):103–112

    Article  CAS  Google Scholar 

  • Moberg AK, Ellem GK, Jameson GJ, Herbertson JG (2012) Simulated cell trajectories in a stratified gas–liquid flow tubular photobioreactor. J Appl Phycol 24(3):357–363

    Article  CAS  Google Scholar 

  • Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 bio-fixation. Front Bioeng Biotechnol 7:42–42

    Article  Google Scholar 

  • Molina Grima E, Fernández FGA, Garcı́a Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scale-up. J Biotechnol 70(1):231–247

    Article  CAS  Google Scholar 

  • Molina E, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12(3):355–368

    Article  Google Scholar 

  • Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by rite (2) - Screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manag 38:S493–S497

    Article  CAS  Google Scholar 

  • Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89(2):178–195

    Article  CAS  Google Scholar 

  • Onorato C, Rösch C (2020) Comparative life cycle assessment of astaxanthin production with Haematococcus pluvialis in different photobioreactor technologies. Algal Res 50:102005

    Article  Google Scholar 

  • Pfaffinger CE, Severin TS, Apel AC, Göbel J, Sauter J, Weuster-Botz D (2019) Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors. J Biotechnol 297:41–48

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG (2017) Photobioreactor design for microalgae production through computational fluid dynamics: a review. Renew Sust Energ Rev 79:248–254

    Article  CAS  Google Scholar 

  • Płaczek M, Patyna A, Witczak S (2017) Technical evaluation of photobioreactors for microalgae cultivation. E3S Web Conf 19:02032

    Article  Google Scholar 

  • Pruvost J, Cornet JF, Le Borgne F, Goetz V, Legrand J (2015) Theoretical investigation of microalgae culture in the light changing conditions of solar photobioreactor production and comparison with cyanobacteria. Algal Res 10:87–99

    Article  Google Scholar 

  • Pruvost J, Cornet J-F, Pilon L (2016a) Large-scale production of algal biomass: photobioreactors. In: Bux F, Chisti Y (eds) Algae biotechnology: products and processes. Springer International Publishing, Cham, pp 41–66

    Chapter  Google Scholar 

  • Pruvost J, Le Borgne F, Artu A, Cornet J-F, Legrand J (2016b) Chapter 5: Industrial photobioreactors and scale-up concepts. In: Legrand J (ed) Advances in chemical engineering. Academic Press, pp 257–310

    Google Scholar 

  • Pruvost J, Le Gouic B, Lepine O, Legrand J, Le Borgne F (2016c) Microalgae culture in building-integrated photobioreactors: Biomass production modeling and energetic analysis. Chem Eng J 284:850–861

    Article  CAS  Google Scholar 

  • Pruvost J, Le Borgne F, Artu A, Legrand J (2017) Development of a thin-film solar photobioreactor with high biomass volumetric productivity (AlgoFilm©) based on process intensification principles. Algal Res 21:120–137

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing: a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Rubio FC, Camacho FG, Sevilla JM, Chisti Y, Grima EM (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81(4):459–473

    Article  Google Scholar 

  • Sato T, Yamada D, Hirabayashi S (2010) Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Convers Manag 51(6):1196–1201

    Article  CAS  Google Scholar 

  • Scheufele FB, Hinterholz CL, Zaharieva MM, Najdenski HM, Modenes AN, Trigueros DEG, Borba CE, Espinoza-Quinones FR, Kroumov AD (2019) Complex mathematical analysis of photobioreactor system. Eng Life Sci 19(12):844–859

    Article  CAS  Google Scholar 

  • Schuelter AR, Kroumov AD, Hinterholz CL, Fiorini A, Trigueros DEG, Vendruscolo EG, Zaharieva MM, Modenes AN (2019) Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochem Eng J 144:28–39

    Article  CAS  Google Scholar 

  • Sero ET, Siziba N, Bunhu T, Shoko R, Jonathan E (2020) Biophotonics for improving algal photobioreactor performance: a review. Int J Energy Res 44(7):5071–5092

    Article  CAS  Google Scholar 

  • Shah S, Shah M, Shah A, Shah M (2020) Evolution in the membrane-based materials and comprehensive review on carbon capture and storage in industries. Emerg Mater 3(1):33–44

    Article  CAS  Google Scholar 

  • Sifat NS, Haseli Y (2019) A critical review of CO2 capture technologies and prospects for clean power generation. Energies 12:4143

    Article  CAS  Google Scholar 

  • Singh J, Dhar DW (2019) Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art [mini review]. Front Mar Sci 6(29)

    Google Scholar 

  • Sivasangari S, VelRajan T, Nandhini J (2019) A comparative study on the performance of conventional photobioreactors and ALGADISK in CO2 sequestration – a review. Energy Sources, Part A: Recov Util Environ Effects:1–6

    Google Scholar 

  • Soman A, Shastri Y (2015) Optimization of novel photobioreactor design using computational fluid dynamics. Appl Energy 140:246–255

    Article  Google Scholar 

  • Song C, Liu Q, Deng S, Li H, Kitamura Y (2019a) Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew Sust Energ Rev 101:265–278

    Article  CAS  Google Scholar 

  • Song C, Liu Q, Qi Y, Chen G, Song Y, Kansha Y, Kitamura Y (2019b) Absorption-microalgae hybrid CO2 capture and biotransformation strategy: a review. Int J Greenhouse Gas Control 88:109–117

    Article  CAS  Google Scholar 

  • Suh IS, Lee SB (2001) Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor. J Appl Phycol 13(4):381–388

    Article  Google Scholar 

  • Uddin D, Gani O, Mahato A, Sakib I, Mony R (2020) Spirulina (Spirulina platensis) production in different photobioreactors on rooftop. Int J Business Soc Scientific Res 8(1):15–19

    Google Scholar 

  • Ugwu C, Ogbonna J, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58(5):600–607

    Article  CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  CAS  Google Scholar 

  • United Nations. (2011). Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC)

    Google Scholar 

  • Usui N, Ikenouchi M (1997) The biological CO2 fixation and utilization project by RITE(1) – highly-effective photobioreactor system. Energy Convers Manag 38:S487–S492

    Article  CAS  Google Scholar 

  • Wei X, Manovic V, Hanak DP (2020) Techno-economic assessment of coal- or biomass-fired oxy-combustion power plants with supercritical carbon dioxide cycle. Energy Convers Manag 221:113143

    Article  CAS  Google Scholar 

  • Wu W, Chang J-S (2019) Integrated algal biorefineries from process systems engineering aspects: a review. Bioresour Technol 291:121939

    Article  CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong X-R, Liu C-Z (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189

    Article  CAS  Google Scholar 

  • Xue S, Zhang Q, Wu X, Yan C, Cong W (2013) A novel photobioreactor structure using optical fibers as inner light source to fulfill flashing light effects of microalgae. Bioresour Technol 138:141–147

    Article  CAS  Google Scholar 

  • Yadav G, Dubey BK, Sen R (2020) A comparative life cycle assessment of microalgae production by CO2 sequestration from flue gas in outdoor raceway ponds under batch and semi-continuous regime. J Clean Prod 258:120703

    Article  CAS  Google Scholar 

  • Yeh N, Chung J-P (2009) High-brightness LEDs—energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sust Energ Rev 13(8):2175–2180

    Article  CAS  Google Scholar 

  • Yu Q, Wang H, Li X, Yin Y, Qin S, Ge B (2020) Enhanced biomass and CO2 sequestration of Chlorella vulgaris using a new mixotrophic cultivation method. Process Biochem 90:168–176

    Article  CAS  Google Scholar 

  • Zhu Q (2019) Developments on CO2-utilization technologies. Clean Energy 3(2):85–100

    Article  Google Scholar 

  • Zhu C, Zhai X, Xi Y, Wang J, Kong F, Zhao Y, Chi Z (2020) Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate Pool. J CO2 Util 37:320–327

    Article  CAS  Google Scholar 

  • Zijffers J-WF, Janssen M, Tramper J, Wijffels RH (2008) Design process of an area-efficient photobioreactor. Mar Biotechnol (NY) 10(4):404–415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the grant КП-06-Н37/12 of the Bulgarian National Science Foundation, which the authors gratefully acknowledge. The authors are very grateful to Dr. Yana Ilieva for the professional reading and revising of the MS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kroumov, A.D., Zaharieva, M.M., Scheufele, F.B., Balabanova, V., Najdenski, H. (2021). Engineering Challenges of Carbon Dioxide Capture and Sequestration by Cyanobacteria. In: Rastogi, R.P. (eds) Ecophysiology and Biochemistry of Cyanobacteria. Springer, Singapore. https://doi.org/10.1007/978-981-16-4873-1_16

Download citation

Publish with us

Policies and ethics