Skip to main content

Linear Time-Varying Model Predictive Control for Trajectory-Tracking of a Wheeled Mobile Robot

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

Abstract

In this paper, a linear time-varying model predictive control (MPC) is proposed for the wheeled mobile robot to track the reference trajectory. The nonlinear model subject to the non-holonomic constraint is linearized and discretized into a linear time-varying model, such that the time-varying MPC can be applied. The MPC algorithm is processed with the linear time-varying model. Recursive feasibility and closed-loop stability are proved in the framework of time-varying systems, while the control inputs (linear and angular velocities) are proved to be bounded within their constraints. A simulation example is provided to support the theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanjanawaniskul, K.F.: Motion control of a wheeled mobile robot using model predictive control: a survey. Asia-Pacific J. Sci. Technol. 17(5), 811–837 (2012)

    Google Scholar 

  2. Kolmanovsky, I., Mcclamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. 15(6), 20–36 (1995)

    Google Scholar 

  3. Brockett, R.: Asymptotic stability and feedback stabilization. Differ. Geom. Control Theor. 27(1), 181–191 (1983)

    Google Scholar 

  4. Godhavn, J.M., Egeland, O.: A Lyapunov approach to exponential stabilization of nonholonomic systems in power form. IEEE Trans. Autom. Control 42(7), 1028–1032 (1997)

    Article  MathSciNet  Google Scholar 

  5. Sontag, E.D.: Stability and feedback stabilization. Mathematics of Complexity and Dynamical Systems, pp. 1639–1652 (2011)

    Google Scholar 

  6. Panagou, D., Kyriakopoulos, K.J.: Dynamic positioning for an underactuated marine vehicle using hybrid control. Int. J. Control 87(2), 264–280 (2014)

    Article  MathSciNet  Google Scholar 

  7. Michaek, M., Kozowski, K.: Vector-field-orientation feedback control method for a differentially driven vehicle. IEEE Trans. Control Syst. Technol. 18(1), 45–65 (2009)

    Article  Google Scholar 

  8. Chwa, D.K., Seo, J.H., Kim, P., et al.: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 637–644 (2004)

    Article  Google Scholar 

  9. Indiveri, G., Paulus, J., Plöger, P.G.: Motion control of swedish wheeled mobile robots in the presence of actuator saturation. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 35–46. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74024-7_4

    Chapter  Google Scholar 

  10. Mayne, D.Q., Rawlings, J.B.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  11. Gu, D., Hu, H.: Receding horizon tracking control of wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(4), 743–749 (2006)

    Article  Google Scholar 

  12. Yu, S., Chen, H., Zhang, P., et al.: An LMI optimization approach for enlarging the terminal region of MPC for nonlinear systems. Acta Autom. Sinica 34(7), 798–804 (2008)

    Article  MathSciNet  Google Scholar 

  13. Nascimento, T.P., Moreira, A.P., Conceição, A.: Multi-robot nonlinear model predictive formation control: moving target and target absence. Robot. Auton. Syst. 61(12), 1502–1515 (2013)

    Article  Google Scholar 

  14. Hedjar, R., Alsulaiman, M., Almutib, K.: Approximated nonlinear predictive control for trajectory tracking of a wheeled mobile robot. In: First International Conference on Robot, Vision and Signal Processing, F. (eds.) Conference 2011, pp. 296–299. Kaohsiung, Taiwan (2011)

    Google Scholar 

  15. Guechi, E.H., Lauber, J., DAmbrine, M., et al.: Output feedback controller design of a unicycle-type mobile robot with delayed measurements. IET Control Theor. Appl. 6(5), 726–733 (2012)

    Google Scholar 

  16. Thuilot, B.D., Andrea-Novel, B., Micaelli, A.: Modeling and feedback control of mobile robots equipped with several steering wheels. IEEE Trans. Robot. Autom. 12(3), 375–390 (1996)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China under grants 62073015 and 61703018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, J., Zhu, B. (2021). Linear Time-Varying Model Predictive Control for Trajectory-Tracking of a Wheeled Mobile Robot. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics