Skip to main content

Nanotechnology in Fish Health and Welfare: Recent Advancements and New Perspectives

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management
  • 797 Accesses

Abstract

Nanoscience, where objects are measured at one billionth of a meter, enables the particles with the unique properties that function as a unit within the size range. In aquaculture, nanotechnology has a wide range of applications, from the delivery of drugs, nucleic acids, peptides, feed, nutraceuticals, etc., to the water treatment system. In general, nanotechnology has started replacing the antiquated fish production systems especially in breeding, disease management, and postharvest technology. In the fish disease management system, the nanostructured materials are being used as immunomodulatory substances to more efficiently manipulate or deliver immunologically active substances to the target location. Starting from the disease-causing bacteria to the deadly viruses, nanomedicine at a lower dosage has been used to curb all kinds of infections at a faster rate in aquaculture species. In this chapter, the general outline of nanotechnology and its current use in fish production management is discussed. Further the current trends of the use of nanotechnology in fish disease prevention are thoroughly summarized. Successful applications of nanotechnology in the field of fish disease management enable to develop new effective vaccines, adjuvants, as well as immunomodulatory drugs to enhance clinical outcomes in response to a variety of noninfectious and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adomako M, St-Hilaire S, Zheng Y, Eley J, Marcum RD, Sealey W, Donahower BC, LaPatra S, Sheridan PP (2012) Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [poly (D, L-lactic-co-glycolic acid)] Nps. J Fish Dis 35(3):203–214

    CAS  PubMed  Google Scholar 

  • Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Koshio S, Dorkoosh FA et al (2011) Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym 86(1):142–146

    CAS  Google Scholar 

  • Ana I, Saint-Jean SR, Pérez-Prieto SI (2010) Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. Fish Shellfish Immunol 28:562–570

    Google Scholar 

  • Antony JJ, Ni M, Durairaj S, Ganesapandy P, Palanivel K, Seenivasan K, Arunachalam S, Shanmugam A (2013) Antimicrobial activity of Leucas aspera engineered silver Nps against Aeromonas hydrophila in infected Catla. Colloids Surf B: Biointerfaces 109:20–24

    CAS  PubMed  Google Scholar 

  • Ashraf PM, Edwin L (2016) Nano copper oxide incorporated polyethylene glycol hydrogel: an efficient antifouling coating for cage fishing net. Int Biodeterior Biodegradation 115:39–48

    CAS  Google Scholar 

  • Baldissera MD, Souza CF, da Silva AS, Velho MC, Ourique AF, Baldisserotto B (2020) Benefits of nanotechnology: dietary supplementation with nerolidol-loaded nanospheres increases survival rates, reduces bacterial loads and prevents oxidative damage in brains of Nile tilapia experimentally infected by Streptococcus agalactiae. Microb Pathog 141:103989

    CAS  PubMed  Google Scholar 

  • Behera T, Swain P (2011) Antigen adsorbed calcium phosphate Nps stimulate both innate and adaptive immune response in fish. Labeo rohita H Cell Immunol 271:250–259

    Google Scholar 

  • Behera T, Nanda PK, Mohanty C, Mohapatra D, Swain P, Das BK et al (2010) Parenteral immunization of fish, Labeo rohita with poly D, L-lactide-co-glycolic acid (PLGA) encapsulated antigen microparticles promotes innate and adaptive immune responses. Fish and Shellfish Immunology 28:320–325

    CAS  PubMed  Google Scholar 

  • Bhat IA, Rather MA, Saha R, Pathakota G-B, Pavan-Kumar A, Sharma R (2016) Expression analysis of Sox9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clarias batrachus. Res Vet Sci 106:100–106. https://doi.org/10.1016/j.rvsc.2016.03.022

    Article  CAS  PubMed  Google Scholar 

  • Bhat IA, Ahmad I, Nazir MI, Bhat RAH, Pathakota GB, Goswami M, Sundaray JK, Sharma R (2018) Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J Steroid Biochem Mol Biol 185:237–247

    PubMed  Google Scholar 

  • Bhat IA, Nazir MI, Ahmad I, Pathakota GB, Chanu TI, Goswami M, Sundaray JK, Sharma R (2018a) Fabrication and characterization of chitosan conjugated eurycomanone nanoparticles: in vivo evaluation of the biodistribution and toxicity in fish. Int J Biol Macromol 112:1093–1103

    CAS  PubMed  Google Scholar 

  • Bhat IA, Ahmad I, Nazir MI, Dar JY, Ganie PA, Bhat RAH, Pathakota GB, Sharma R (2019) Evaluation of the in vivo effect of chitosan conjugated eurycomanone nanoparticles on the reproductive response in female fish model. Aquaculture 510:392–399

    CAS  Google Scholar 

  • Bhattacharyya A, Reddy SJ, HasanMM AM, Marye RR (2015) Nanotechnology-a unique future technology in aquaculture for the food security. Int J Bioass 4:4115–4126

    CAS  Google Scholar 

  • Bisesi JH et al (2015) Examination of single-walled carbon nanotubes uptake and toxicity from dietary exposure: tracking movement and impacts in the gastrointestinal system. Nano 5:1066–1086

    CAS  Google Scholar 

  • Cavalieri F, Tortora M, Stringaro A, Colone M, Baldassarri L (2014) Nanomedicines for antimicrobial interventions. J Hosp Infect 88(4):183–190

    CAS  PubMed  Google Scholar 

  • Champ MA (2003) Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar Pollut Bull 46:935–940

    CAS  PubMed  Google Scholar 

  • Chen P-J, Wu W-L, Wu KC-W (2013) The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res 47:3899–3909

    CAS  PubMed  Google Scholar 

  • Dananjaya S, Godahewa G, Jayasooriya R, Lee J, De Zoysa M (2016) Antimicrobial effects of chitosan silver nano composites (CAgNCs) on fish pathogenic Aliivibrio (Vibrio) salmonicida. Aquaculture 450:422–430

    CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and Nps: applications and hazards. Int J Nanomed 3(2):133

    Google Scholar 

  • Deng Y, Cheng Q (2003) Affects of nano-selenium on the growth of nile tilapia (Oreochromis niloticus). Inland Aquat Prodd 6:28–30

    Google Scholar 

  • Dezfuly ZT, Alishahi M, GhorbaNPsoor M, Tabandeh MR, Mesbah M (2020) Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/Nps in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 12

    Google Scholar 

  • Dubey S, Avadhani K, Mutalik S, Sivadasan SM, Maiti B, Paul J, Girisha SK, Venugopal MN, Mutoloki S, Evensen O, Karunasagar I, Munanģandu HM (2016) Aeromonas hydrophila OmpW PLGA nanoparticle oral vaccine shows a dose-dependent protective immunity in rohu (Labeo rohita). Vaccine 4:21

    Google Scholar 

  • Faikoh EN, Hong YH, Hu SY (2014) Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae. Fish Shellfish Immunol 38:15–24

    CAS  PubMed  Google Scholar 

  • Faiz H, Zuberi A, Nazir S, Rauf M, Younus N (2015) Zinc oxide, zinc sulfate and zinc oxide Nps as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agr Biol 17:568–574

    CAS  Google Scholar 

  • Falco A, Barrajón-Catalán E, Menéndez-Gutiérrez MP, Coll J, Micol V, Estepa A (2013) Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antivir Res 97:218–221

    CAS  PubMed  Google Scholar 

  • Fenaroli F, Westmoreland D, Benjaminsen J, Kolstad T, Skjeldal FM, Meijer AH et al (2014) Nps as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS Nano 8(7):7014–7026

    CAS  PubMed  Google Scholar 

  • Ferosekhan S, Gupta S, Singh A, Rather M, Kumari R, Kothari D et al (2014) RNA-loaded chitosan Nps for enhanced growth, immunostimulation and disease resistance in fish. Curr Nanosci 10:453–464

    CAS  Google Scholar 

  • Fraser TW, Reinardy HC, Shaw BJ, Henry TB, Handy RD (2011) Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicol 5:98–108

    CAS  Google Scholar 

  • Gerber LC, Moser N, Luechinger NA, Stark WJ, Grass RN (2012) Phosphate starvation as an antimicrobial strategy: the controllable toxicity of lanthanum oxide Nps. Chem Commun 48:3869–3871

    CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO Nps against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22(6):693–700

    Google Scholar 

  • Guo J, Zhang R, Yang N (2016) An Immunomagnetic-nanoparticle-based microfluidic system for rapid separation and detection of aquaculture pathogens. J Comput Theor Nanosci 13:2226–2231

    CAS  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo MS (2012a) Poly D, L-lactide-co-glycolic acid (PLGA)-encapsulated vaccine on immune system in Epinephelus bruneus against Uronema marinum. Exp Parasitol 131:325–332

    CAS  PubMed  Google Scholar 

  • Harikrishnan R, Kim JS, Balasundaram C, Heo MS (2012b) Vaccination effect of liposomes entrapped whole cell bacterial vaccine on immune response and disease protection in Epinephelus bruneus against Vibrio harveyi. Aquaculture 342:69–74

    Google Scholar 

  • Heidarieh M, Moodi S, Katuli KK, Unger H (2015) Biochemical effects of encapsulated Radiovaccine via alginate Nps as strategy for booster in immunized rainbow trout against Ichthyophthirius multifiliis. Acta Sci Vet 43:1330

    Google Scholar 

  • Holmes JD, Lyons DM, Ziegler KJ (2003) Supercritical fluid synthesis of metal and semiconduct or nanomaterials. Chemistry 9(10):2144–2150

    CAS  Google Scholar 

  • Huang C-M, Chen C-H, PorNPsattananangkul D, Zhang L, Chan M, Hsieh M-F, Zhang L (2011) Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32:214–221

    CAS  PubMed  Google Scholar 

  • Irie T, Watarai S, Iwasaki T, Kodama H (2005) Protection against experimental Aeromonas salmonicida infection in carp by oral immunisation with bacterial antigen entrapped liposomes. Fish Shellfish Immunol 18:235–242

    CAS  PubMed  Google Scholar 

  • Jaroenram W, Arunrut N, Kiatpathomchai W (2012) Rapid and sensitive detection of shrimp yellow head virus using loop-mediated isothermal amplification and a colorogenic nanogold hybridization probe. J Virol Methods 186(1):36–42

    CAS  PubMed  Google Scholar 

  • Ji J, Torrealba D, Ruyra À, Roher N (2015) Nanodelivery systems as new tools for immunostimulant or vaccine administration: targeting the fish immune system. Biology 4(4):664–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johari SA, Kalbassi MR, Soltani M, Yu IJ (2015) Study of fungicidal properties of colloidal silver Nps (AgNpss) on trout egg pathogen, Saprolegnia sp. Int J Aquat Biol 3:191–119

    Google Scholar 

  • Kavaliauskis A, Arnemo M, Speth M, Lagos L, Rishovd AL, Estepa A, Griffiths G, Gjoen T (2016) Protective effect of recombinant VHSV-G vaccine using poly (I:C) loaded nanoparticles as an adjuvant in zebrafish (Danio rerio) infection model. Dev Comp Immunol 61:248–257

    CAS  PubMed  Google Scholar 

  • Klinkesorn U, McClements DJ (2009) Influence of chitosan on stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions. Food Chem 114:1308–1315

    CAS  Google Scholar 

  • Kole S, Kumari R, Anand D, Kumar S, Sharma R, Tripathi G, Makesh M, Rajendran KV, Bedekar MK (2018) Nanoconjugation of bicistronic DNA vaccine against Edwardsiella tarda using chitosan Nps: evaluation of its protective efficacy and immune modulatory effects in Labeo rohita vaccinated by different delivery routes. Vaccine 36:2155–2165

    CAS  PubMed  Google Scholar 

  • Kole S, Qadiri SSN, Shin S-M, Kim W-S, Lee J, Jung S-J (2019) Nanoencapsulation of inactivated-viral vaccine using chitosan Nps: evaluation of its protective efficacy and immune modulatory effects in olive flounder (Paralichthys olivaceus) against viral haemorrhagic septicaemia virus (VHSV) infection. Fish Shellfish Immunol 91:136–147

    CAS  PubMed  Google Scholar 

  • Kuan GC, Sheng LP, Rijiravanich P, Marimuthu K, Ravichandran M, Yin LS et al (2013) Gold-nanoparticle based electrochemical DNA sensor for the detection of fish pathogen Aphanomyces invadans. Talanta 117:312–317

    CAS  PubMed  Google Scholar 

  • Kumar P, Bhat IA, Rather MA, Gireesh-Babu P, Suresh-Babu P, Sharma R (2017) Steroidogenic acute regulatory protein (StAR) gene expression construct: development, nanodelivery and effect on reproduction in air-breathing catfish, Clarias batrachus. Int J Biol Macromol 104:1082–1090

    PubMed  Google Scholar 

  • Kumar N, Gupta SK, Chandan NK, Bhushan S, Singh DK, Kumar P, Kumar P, Wakchaure GC, Singh NP (2020) Mitigation potential of selenium nanoparticles and riboflavin against arsenic and elevated temperature stress in Pangasianodon hypophthalmus. Sci Rep 10(1):1–17

    Google Scholar 

  • Lara HH, Ayala-Núnez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver Nps against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    CAS  Google Scholar 

  • Leal CAG, Carvalho-Castro GA, Sacchetin PSC, Lopes CO, Moraes ÂM, Figueiredo HCP (2010) Oral and parenteral vaccines against Flavobacterium columnare: evaluation of humoral immune response by ELISA and in vivo efficiency in Nile tilapia (Oreochromis niloticus). Aquacult Int 18:657–666

    Google Scholar 

  • León-Rodríguez L, Luzardo-Álvarez A, Blanco-Méndez J, Lamas J, Leiro J (2013) Biodegradable microparticles covalently linked to surface antigens of the scuticociliate parasite P. dicentrarchi promote innate immune responses in vitro. Fish and Shellfish Immunology 34:236–243

    PubMed  Google Scholar 

  • Leya T, Ahmad I, Sharma R, Tripathi G, Kurcheti PP, Rajendran KV, Bedekar MK (2020) Bicistronic DNA vaccine macromolecule complexed with poly lactic-co-glycolic acid-chitosan Nps enhanced the mucosal immunity of Labeo rohita against Edwardsiella tarda infection. Int J Biol Macromol 156:928–937

    CAS  PubMed  Google Scholar 

  • Li L, Lin SL, Deng L, Liu ZG (2013) Potential use of chitosan Nps for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 36(12):987–995

    CAS  PubMed  Google Scholar 

  • Mathur A, Kushwaha A, Dalakoti V, Dalakoti G, Singh DS (2014) Green synthesis of silver Nps using medicinal plant and its characterization. Pharm Lett 5:118–122

    Google Scholar 

  • Mohd Ashraf M, Aklakur R, Shabir A, Mujhid K (2011) Nanotechnology as a novel tool in fisheries and aquaculture development: a review.Iran. J Energy Environ 2(3):258–261

    Google Scholar 

  • Mondal AH, Behera T, Swain P, Das R, Sahoo SN, Mishra SS, Das J, Ghosh K (2020) Nano zinc Vis-à-Vis inorganic zinc as feed additives: effects on growth, activity of hepatic enzymes and non-specific immunity in rohu, Labeo rohita (Hamilton) fingerlings. Aquac Nutr 26:1211–1222

    CAS  Google Scholar 

  • Monikh FA, Chupani L, Smerkova K, Bosker T, Cizar P, Krzyzanek V, Richtera L, Franek R, Zuskova E, Skoupy R, Darbha GK (2020) Engineered nanoselenium supplemented fish diet: toxicity comparison with ionic selenium and stability against particle dissolution, aggregation and release. Environ Sci Nano 7(8):2325–2336

    Google Scholar 

  • Munanģandu HM, Fredriksen BN, Mutoloki S, Brudeseth B, Kuo TY, Marjara IS, Dalmo RA, Evensen O (2012) Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salm Salar L.) in a cohabitation challenge model. Vaccine 30:4007–4016

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed  PubMed Central  Google Scholar 

  • Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, Goswami C, Sonawane A (2014) Topical application of zinc oxide Nps reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine: NBM 10:1195–1208

    CAS  Google Scholar 

  • Peniche C, Howland I, Carrillo O, Zaldıvar C, Argüelles-Monal W (2004) Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocoll 18:865–871

    CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver Nps: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Google Scholar 

  • Pradeep T (2009) Noble metal Nps for water purification: a critical review. Thin Solid Films 517:6441–6478

    CAS  Google Scholar 

  • Pulkkinen K, Suomalainen LR, Read AF, Ebert D, Rintamäki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc R Soc B Biol Sci 277(1681):593–600

    CAS  Google Scholar 

  • Qiu DK, Jia YJ, Gong YM, Zheng YY, Wang GX, Zhu B (2020) Optimizing the immunization procedure of single-walled carbon nanotubes based vaccine against grass carp reovirus for grass carp. Aquaculture, p.736152

    Google Scholar 

  • Rajesh SK, Ahmed VPI, Parameswaran V, Sudhakaran R, Babu VS, Hameed ASS (2008) Potential of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from vibrio (Listonella) anguillarum. Fish Shellfish Immunol 25:47–56

    Google Scholar 

  • Rajeshkumar S, Venkatesan C, Sarathi M, Sarathbabu V, Thomas J, Basha KA, Hameed AS (2009) Oral delivery of DNA construct using chitosan Nps to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunol 26:429–437

    CAS  Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide Nps in rainbow trout (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951

    CAS  PubMed  Google Scholar 

  • Ramya VL, Sharma R, Gireesh-Babu P, Patchala SR, Rather A, NandaNPsawar PC, Eswaran S (2014) Development of chitosan conjugated DNA vaccine against nodavirus in Macrobrachium rosenbergii (De Man, 1879). J Fish Dis 37(9):815–824

    CAS  PubMed  Google Scholar 

  • Rather M, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya V (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini review. Fisheries Aquaculture J 16:1–5

    Google Scholar 

  • Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya VL, Jadhao SB (2013) Chitosan-nanoconjugated hormone Nps for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS One 8(2):e57094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rather MA, Bhat IA, Sharma N, Gora A, Ganie PA, Sharma R (2016) Synthesis and characterization of Azadirachta indica constructed silver nanoparticles and their immunomodulatory activity in fish. Aquaculture Res 48:3742–3754

    Google Scholar 

  • Rauta PR, Nayak B (2015) Parenteral immunization of PLA/ PLGA nanoparticle encapsulating outer membrane protein (Omp) from Aeromonas hydrophila: evaluation of immunostimulatory action in Labeo rohita (rohu). Fish Shellfish Immunol 44:287–294

    CAS  PubMed  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    CAS  Google Scholar 

  • Rivas-Aravena A, Fuentes Y, Cartagena J, Brito T, Poggio V, La Torre J et al (2015) Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immunol 45(1):157–166

    CAS  PubMed  Google Scholar 

  • Ross KA, Loyd H, Wu W, Huntimer L, Wannemuehler MJ, Carpenter S, Narasimhan B (2014) Structural and antigenic stability of H5N1 hemagglutinin trimer upon release from polyanhydride Nps. J Biomed mat Res Part a 102(11):4161–4168

    Google Scholar 

  • Saha R, Bhat IA, Charan R, Purayil SBP, Krishna G, Kumar AP, Sharma R (2018) Ameliorative effect of chitosan-conjugated 17α-methyltestosterone on testicular development in Clarias batrachus. Anim Reprod Sci 193:245–254

    CAS  PubMed  Google Scholar 

  • Saleh M, El-Matbouli M (2015) Rapid detection of cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay. J Virol Methods 217:50–54

    CAS  PubMed  Google Scholar 

  • Saleh M, Soliman H, Haenen O, El-Matbouli M (2011) Antibody-coated gold Nps immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis 34(11):845–852

    CAS  PubMed  Google Scholar 

  • Saleh M, Soliman H, Schachner O, El-Matbouli M (2012) Direct detection of unamplified spring viraemia of carp virus RNA using unmodified gold Nps. Dis Aquat Org 100(1):3–10

    CAS  Google Scholar 

  • Seetang-Nun Y, Jaroenram W, Sriurairatana S, Suebsing R, Kiatpathomchai W (2013) Visual detection of white spot syndrome virus using DNA-functionalized gold Nps as probes combined with loop-mediated isothermal amplification. Mol Cell Probes 27(2):71–79

    CAS  PubMed  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of Nps in fish medicine: a review. Nanomedicine: NBM 12:701–710

    CAS  Google Scholar 

  • Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M (2017) In vitro assessment of the antimicrobial activity of silver and zinc oxide Nps against fish pathogens. Acta Veterinaria Scandinavica 59(1):49

    PubMed  PubMed Central  Google Scholar 

  • Stepanov AL, Golubev AN, Nikitin SI, Osin YN (2014) A review on the fabrication and properties of platinum Nps. Rev Adv Mater Sci 38:1

    Google Scholar 

  • Strømme M, Brohede U, Atluri R, Garcia-Bennett AE (2009) Mesoporous silica-based nanomaterials for drug delivery: evaluation of structural properties associated with release rateWiley interdisciplinary reviews. Nanomed Nanobiotechnol 1:140–148

    Google Scholar 

  • Tian J, Yu J (2011) Poly (lactic-co-glycolic acid) Nps as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol 30:109–117

    PubMed  Google Scholar 

  • Tian J, Sun X, Chen X, Yu J, Qu L, Wang L (2008) The formulation and immunisation of oral poly (DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). Int Immunopharmacol 8(6):900–908

    CAS  PubMed  Google Scholar 

  • Toubanaki DK, Margaroni M, Karagouni E (2015) Nanoparticle-based lateral flow biosensor for visual detection of fish nervous necrosis virus amplification products. Mol Cell Probes 3:158–166

    Google Scholar 

  • Vaseeharan B, Ramasamy P, Chen JC (2010) Antibacterial activity of silver Nps (AgNPss) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett Appl Microbiol 50(4):352–356

    CAS  PubMed  Google Scholar 

  • Velmurugan P, Iydroose M, Lee SM, Cho M, Park JH, Balachandar V et al (2014) Synthesis of silver and gold Nps using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54(2):196–202

    CAS  PubMed  Google Scholar 

  • Vijayan SR, Santhiyagu P, Singamuthu M, Kumari Ahila N, Jayaraman R (2008) Ethiraj K (2014) synthesis and characterization of silver and gold Nps using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J 8(6):900–908

    Google Scholar 

  • Vimal S, Taju G, Nambi KN, Majeed SA, Babu VS, Ravi M, Hameed AS (2012) Synthesis and characterization of CS/TPP Nps for oral delivery of gene in fish. Aquaculture 358:14–22

    Google Scholar 

  • Vimal S, Majeed AS, Nambi KSN, Madan N, Farook MA, Venkatesan C, Taju G, Venu S, Subburaju R, Thirunavakkarasu AR, Hameed ASS (2014) Delivery of DNA vaccine using chitosan-tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against nodavirus infection. Aquaculture 420:240–246

    Google Scholar 

  • Wang Y, Yan X, Fu L (2013) Effect of selenium Nps with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. Int J Nanomedicine 8:4007–4013

    PubMed  PubMed Central  Google Scholar 

  • Wen J, Chai D, Ding Y, Yu L, Huang J (2003) Summary report on experiment of strong nanometer 863 biological assistant growth unit in sea shrimp farming. Modern Fisheries Inf 18:12–15

    Google Scholar 

  • Wisdom KS, Bhat IA, Kumar P, Pathan MK, Chanu TI, Walke P, Sharma R (2018) Fabrication of chitosan nanoparticles loaded with aromatase inhibitors for the advancement of gonadal development in Clarias Magur (Hamilton, 1822). Aquaculture 497:125–133

    CAS  Google Scholar 

  • Xu P et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    CAS  PubMed  Google Scholar 

  • Yang SY, Wu JL, Tso CH, Ngou FH, Chou HY, Nan FH et al (2012) A novel quantitative immunomagnetic reduction assay for nervous necrosis virus. J Vet Diagn Investig 24(5):911–917

    Google Scholar 

  • Yasumoto S, Kuzuya Y, Yasuda M, Yoshimura T, Miyazaki T (2006a) Oral immunization of common carp with a liposome vaccine fusing koi herpesvirus antigen. Fish Pathol. 41:141–145

    CAS  Google Scholar 

  • Yasumoto S, Yoshimura T, Miyazaki T (2006b) Oral immunization of common carp with a liposome vaccine containing Aeromonas hydrophila antigen. Fish Pathol 41:45–49

    CAS  Google Scholar 

  • Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y (2015) Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 77:307–319

    PubMed  Google Scholar 

  • Zhang C, Wang GX, Zhu B (2020) Application of antigen presenting cell-targeted nanovaccine delivery system in rhabdovirus disease prophylactics using fish as a model organism. J Nanobiotechnol 18(1):1–13

    CAS  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelber APJ (2014) Nanoparticle vaccines. Vaccine 32:327–337

    PubMed  Google Scholar 

  • Zhao Z, Xiong Y, Zhang C, Jia YJ, Qiu DK, Wang GX, Zhu B (2020) Optimization of the efficacy of a SWCNTs-based subunit vaccine against infectious spleen and kidney necrosis virus in mandarin fish. Fish Shellfish Immunol 106:190–196

    CAS  PubMed  Google Scholar 

  • Zheng F, Liu H, Sun X, Zhang Y, Zhang B, Teng Z, Hou Y, Wang B (2016) Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots (Scophthalmus maximus). Aquaculture 452:263–271

    CAS  Google Scholar 

  • Zhu B, Liu GL, Gong YX, Ling F, Song LS, Wang GX (2014) Single walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus. Fish Shellfish Immunol 41:279–293

    CAS  PubMed  Google Scholar 

  • Zhu B, Liu GL, Gong YX, Ling F, Wang GX (2015) Protective immunity of grass carp immunized with DNA vaccine encoding vp7 gene of grass carp reovirus using carbon nanotubes as carrier molecule. Fish Shellfish Immunol 42:325–334

    CAS  PubMed  Google Scholar 

  • Zhu B, Zhang C, Zhao Z, Wang GX (2020) Targeted delivery of mannosylated Nps improve prophylactic efficacy of immersion vaccine against fish viral disease. Vaccines 8(1):87

    CAS  PubMed Central  Google Scholar 

Download references

Conflict of Interest

None of the authors declare any conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, I.A., Hussna (2021). Nanotechnology in Fish Health and Welfare: Recent Advancements and New Perspectives. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_18

Download citation

Publish with us

Policies and ethics