Skip to main content

Channel Context and Dual-Domain Attention Based U-Net for Skin Lesion Attributes Segmentation

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2021)

Abstract

Skin melanoma is one of the most common malignant tumors originating from melanocytes, and the incidence of the Chinese population is showing a continuous increasing trend. Early and accurate diagnosis of melanoma has great significance for guiding clinical treatment. However, the symptoms of malignant melanoma are not obvious in the early stage. It is difficult to be diagnosed with human observation. Meanwhile, it is easy to spread due to missed diagnosis. In order to accurately diagnose melanoma, end-to-end skin lesion attribute segmentation framework is presented in this paper. It is applied to facilitate the digitalization process of attributes segmentation. The framework was improved on the U-Net construction that use the channel context feature fusion module between the encoder and decoder to further merge context information. A dual-domain attention module is proposed to get more effective information from the feature map. It shows that the proposed method effectively segments the lesion attributes and achieves good result in the ISIC2018 task2 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adegun, A.A., Viriri, S.: FCN-based DenseNet framework for automated detection and classification of skin lesions in dermoscopy images. IEEE Access 8, 150377–150396 (2020). https://doi.org/10.1109/ACCESS.2020.3016651

  2. Ahn, E., et al.: Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J. Biomed. Health Inform. 21(6), 1685–1693 (2017). https://doi.org/10.1109/JBHI.2017.2653179

    Article  Google Scholar 

  3. Bi, L., Feng, D., Kim, J.: Improving automatic skin lesion segmentation using adversarial learning based data augmentation. CoRR abs/1807.08392 (2018). http://arxiv.org/abs/1807.08392

  4. Bissoto, A., Perez, F., Ribeiro, V., Fornaciali, M., Avila, S., Valle, E.: Deep-learning ensembles for skin-lesion segmentation, analysis, classification: RECOD titans at ISIC challenge 2018. CoRR abs/1808.08480 (2018). http://arxiv.org/abs/1808.08480

  5. Chen, E.Z., Dong, X., Li, X., Jiang, H., Rong, R., Wu, J.: Lesion attributes segmentation for melanoma detection with multi-task U-Net. In: 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019, Venice, Italy, 8–11 April 2019, pp. 485–488. IEEE (2019). https://doi.org/10.1109/ISBI.2019.8759483

  6. Codella, N.C.F., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). CoRR abs/1902.03368 (2019). http://arxiv.org/abs/1902.03368

  7. Patiño, D., Avendaño, J., Branch, J.W.: Automatic skin lesion segmentation on dermoscopic images by the means of superpixel merging. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 728–736. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_83

    Chapter  Google Scholar 

  8. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019). https://doi.org/10.1109/TMI.2019.2903562

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 7132–7141. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00745. http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html

  11. Iglovikov, V., Seferbekov, S., Buslaev, A., Shvets, A.: TernausNetV2: fully convolutional network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  12. Kawahara, J., Hamarneh, G.: Fully convolutional neural networks to detect clinical dermoscopic features. IEEE J. Biomed. Health Inform. 23(2), 578–585 (2019). https://doi.org/10.1109/JBHI.2018.2831680

    Article  Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 3431–3440. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7298965

  14. Nguyen, D.M.H., Ezema, A., Nunnari, F., Sonntag, D.: A visually explainable learning system for skin lesion detection using multiscale input with attention U-Net. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 313–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58285-2_28

    Chapter  Google Scholar 

  15. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. CoRR abs/1804.03999 (2018). http://arxiv.org/abs/1804.03999

  16. Peng, C., Zhang, X., Yu, G., Luo, G., Sun, J.: Large kernel matters - improve semantic segmentation by global convolutional network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 1743–1751. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.189

  17. Peruch, F., Bogo, F., Bonazza, M., Cappelleri, V., Peserico, E.: Simpler, faster, more accurate melanocytic lesion segmentation through MEDS. IEEE Trans. Biomed. Eng. 61(2), 557–565 (2014). https://doi.org/10.1109/TBME.2013.2283803

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Sorokin, A.: Lesion analysis and diagnosis with mask-RCNN. arXiv preprint arXiv:1807.05979 (2018)

  20. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset: a large collection of multi-source dermatoscopic images of common pigmented skin lesions. CoRR abs/1803.10417 (2018). http://arxiv.org/abs/1803.10417

  21. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  22. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/1511.07122

  23. Yu, Z., et al.: Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans. Biomed. Eng. 66(4), 1006–1016 (2019). https://doi.org/10.1109/TBME.2018.2866166

    Article  Google Scholar 

  24. Yuan, Y., Lo, Y.: Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J. Biomed. Health Inform. 23(2), 519–526 (2019). https://doi.org/10.1109/JBHI.2017.2787487

    Article  MathSciNet  Google Scholar 

  25. Zou, J., Ma, X., Zhong, C., Zhang, Y.: Dermoscopic image analysis for ISIC challenge 2018. CoRR abs/1807.08948 (2018). http://arxiv.org/abs/1807.08948

Download references

Acknowledgements

The paper is supported by the National Natural Science Foundation of China under Grant No. 62072135 and No. 61672181.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mu, X., Pan, H., Zhang, K., Teng, T., Bian, X., Chen, C. (2021). Channel Context and Dual-Domain Attention Based U-Net for Skin Lesion Attributes Segmentation. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2021. Communications in Computer and Information Science, vol 1451. Springer, Singapore. https://doi.org/10.1007/978-981-16-5940-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5940-9_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5939-3

  • Online ISBN: 978-981-16-5940-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics