Skip to main content

In Silico Techniques: Powerful Tool for the Development of Therapeutics

  • Chapter
  • First Online:
Functional Foods and Therapeutic Strategies for Neurodegenerative Disorders

Abstract

Drug discovery process develops drugs from candidate molecules to use in clinical practice. Generally, the discovery of successful therapeutics is an expensive, time-consuming process and require huge manpower. In this connection, the computer-aided drug design (CADD) came to the attention of researchers because of the reduced process time, effort, and cost. The CADD started in the nineteenth century and now it became a crucial part of therapeutic development. In this regard, many approaches have evolved in the CADD for the discovery of novel therapeutics. Development of therapeutics involve identifying a specific therapeutic target protein of the disease and discovering a therapeutic ligand molecule. Screening of drug candidate compounds against therapeutic targets is crucial in CADD, which is possible by ligand-based virtual screening (LS-VS) or structure-based virtual screening (SB-VS). There are many interconnected approaches involved in CADD; they are homology modeling, ADME analysis, molecular docking, molecular dynamics simulation, and free energy calculations. Neurodegenerative diseases (NDD) are the most devastating diseases of the old-aged population. The discovery of novel therapeutics to NDDs is highly complicated because of nervous system complexity, lack of methods to study therapeutic action in the central nervous system (CNS), and unavailable methods to confirm therapeutic drug molecules could cross the blood-brain barrier (BBB). In this regard, in silico CADD addressed the above difficulties in the discovery of therapeutics for NDDs using various mathematical models. Most of the successful drug designs for NDDs are using in silico methods and are validated by in vivo and in vitro studies to make them available in the market in a short period with less cost. Currently, in silico techniques are effectively used for the development of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

2 Dimensional

3D:

3 Dimensional

AChE:

Acetylcholine esterase

AD:

Alzheimer's disease

ADMET:

Absorption Diffusion Metabolism Excretion Toxicity

ALS:

Amyotrophic lateral sclerosis

BACE1:

β-site amyloid precursor protein cleaving enzyme 1

BBB:

Blood brain barrier

CADD:

Computer-aided drug design

EM:

Electron microscopy

GSK3β:

Glycogen synthase kinase 3β

HD:

Huntington's disease

IUPAC:

International Union of Pure and Applied Chemistry

LB-VS:

Ligand-Based Virtual Screening

MD:

Molecular dynamics

NDD:

Neurodegenerative diseases

NMDA:

N-methyl-d-aspartate

NMR:

Nuclear magnetic resonance

PD:

Parkinson's disease

QSAR:

Quantitative Structure-Activity Relationship

SAR:

Structure-activity relation

SB-VS:

Structure-Based Virtual Screening

TB-VS:

Target-Based Virtual Screening

USD:

United States dollar

References

  • Abel R, Wang L, Harder ED, Berne BJ, Friesner RA (2017) Advancing drug discovery through enhanced free energy calculations. Acc Chem Res 50:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Albert A (1971) Relations between molecular structure 6501 and biological activity: stages in the evolution of current concepts. Annu Rev Pharmacol 11:13–36

    Article  CAS  PubMed  Google Scholar 

  • Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568

    Article  CAS  PubMed  Google Scholar 

  • Am Ende DJ, Am Ende MT (2019) Chemical engineering in the pharmaceutical industry: an introduction. Chem Eng Pharm Ind Drug Prod Des Dev Model:1–17

    Google Scholar 

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10(9):787–797

    Article  CAS  PubMed  Google Scholar 

  • Anzai I, Toichi K, Tokuda E, Mukaiyama A, Akiyama S, Furukawa Y (2016) Screening of drugs inhibiting in vitro Oli-gomerization of Cu/Zn-Superoxide dismutase with a mutation causing Amyotrophic lateral sclerosis. Front Mol Biosci 3:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Arïens EJ (1979) Receptors: from fiction to fact. Trends Pharmacol Sci 1:11–15

    Article  Google Scholar 

  • Bajorath J (2015) Computer-aided drug discovery [version 1; referees: 3 approved]. F1000 Research 4(F1000 Faculty Rev):630

    Article  Google Scholar 

  • Banerjee P, Erehman J, Gohlke BO, Wilhelm T, Preissner R, Dunkel M (2015) Super Natural II-a database of natural products. Nucleic Acids Res 43:D935–D939

    Article  CAS  PubMed  Google Scholar 

  • Bashir MA, Khan A, Badshah H, Rodrigues-Filho E, Din ZU, Khan A (2019) Synthesis, characterization, molecular docking evaluation, antidepressant, and anti-Alzheimer effects of dibenzylidene ketone derivatives. Drug Dev Res 80(5):595–605

    CAS  PubMed  Google Scholar 

  • Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Ali MA (2013) Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine dervatives. Bioorg Med Chem 21(11):3022–3031

    Article  CAS  PubMed  Google Scholar 

  • Beitz JM (2014) School of nursing-Camden, Rutgers University, 311 N. 5. Front Biosci 6:65–74

    Article  Google Scholar 

  • Bennett CH (1976) Efficient estimation of free energy differences from Monte Carlo data. J Comput Phys 22:245–268

    Article  Google Scholar 

  • Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The protein data bank. Acta Crystallogr Sect D Biol Crystallogr 58:899–907

    Article  Google Scholar 

  • Bicker J, Alves G, Fortuna A, Falcão A (2014) Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 87:409–432

    Article  CAS  PubMed  Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  CAS  PubMed  Google Scholar 

  • Burgen ASV (1981) Conformational changes and drug action. Fed Proc 40:2723–2728

    CAS  PubMed  Google Scholar 

  • Butini S, Gabellieri E, Brindisi M, Casagni A, Guarino E, Huleatt PB, Relitti N, La Pietra V, Marinelli L, Giustiniano M (2013) Novel peptidomimetics as BACE-1 inhibitors: Synthesis, molecular modeling, and biological studies. Bioorg Med Chem Lett 23(1):85–89

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P (2007) ChemDB update—full-text search and virtual chemical space. Bioinformatics 23:2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Chen J, Guo H, Lu JL, Zhou J, Guo XY, Shi Y, Zhang Y, Yu S, Zhang Q, Ding F (2021) Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson's disease model via AMPK activation. Acta Pharmacol Sin 42(5):665–678

    Article  CAS  PubMed  Google Scholar 

  • Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuz’Min VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2014) QSAR modeling: Where have you been? Where are you going to? J Med Chem 57:4977–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ CD, Fox T (2014) Accuracy assessment and automation of free energy calculations for drug design. J Chem Inf Model 54:108–120

    Article  CAS  PubMed  Google Scholar 

  • Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57:2911–2937

    Article  CAS  PubMed  Google Scholar 

  • Cushny A (1926) Biological relations of optical isomeric substances. Williams and Wilkins, Baltimore

    Google Scholar 

  • Daidone F, Montioli R, Paiardini A, Cellini B, Macchiarulo A, Giardina G, Bossa F, Borri Voltattorni C (2012) Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One 7(2):e31610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin A, Medigue C, Gascuel O, Soldano H, Henaut A (1991) From data banks to data bases. Res Microbiol 142:913–916

    Article  CAS  PubMed  Google Scholar 

  • De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061

    Article  PubMed  Google Scholar 

  • Di L, Kerns EH (2015) Blood-brain barrier in drug discovery, 1st edn. John Wiley & Sons, Canada, New Jersey

    Google Scholar 

  • Ehrlich P (1909) Ãœber den jetzigen Stand der Chemotherapie. Bericht d Deutsch Chem Ges 42:17–47

    Article  CAS  Google Scholar 

  • Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152:9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) Binding DB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053

    Article  CAS  PubMed  Google Scholar 

  • Guedes IA, de Magalhães CS, Dardenne LE (2014) Receptor-ligand molecular docking. Biophys Rev 6:75–87

    Article  CAS  PubMed  Google Scholar 

  • Gund P (1977) Three-dimensional pharmacophoric pattern searching. In: Progress in molecular and subcellular biology. Springer, Berlin/Heidelberg, Germany, pp 117–143

    Chapter  Google Scholar 

  • Hamza A, Wei NN, Zhan CG (2012) Ligand-based virtual screening approach using a new scoring function. J Chem Inform Model 52(4):963–974

    Article  CAS  Google Scholar 

  • Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  PubMed  Google Scholar 

  • Harvey AL (1995) Interdisciplinary approaches to drug discovery an academic approach. Interdiscip Sci Rev 20(2):135–140

    Article  Google Scholar 

  • Hillisch A, Pineda LF, Hilgenfeld R (2004) Utility of homology models in the drug discovery process. Drug Discov Today 9:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath D (1997) A virtual screening approach applied to the search for trypanothione reductase inhibitors. J Med Chem 2623:2412–2423

    Article  Google Scholar 

  • Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12:12899–12908

    Article  CAS  PubMed  Google Scholar 

  • Huang HJ, Lee CC, Chen CYC (2014) In silico design of BACE1 inhibitor for alzheimer’s disease by traditional chinese medicine. Biomed Res Int 2014

    Google Scholar 

  • Imamura T, Fujita K, Tagawa K, Ikura T, Chen X, Homma H, Tamura T, Mao Y, Taniguchi JB, Motoki K, Nakabayashi M, Ito N, Yamada K, Tomii K, Okano H, Kaye J, Finkbeiner S, Okazawa H (2016) Identification of hepta-histidine as a candidate drug for Huntington’s disease by in silico-in vitro- in vivo-integrated screens of chemical libraries. Sci Rep 22(6):33861

    Article  Google Scholar 

  • Jain AN, Nicholls A (2008) Recommendations for evaluation of computational methods. J Comput Aid Mol Des 22:133–139

    Article  CAS  Google Scholar 

  • Jauch R, Yeo HC, Kolatkar PR, Clarke ND (2007) Assessment of CASP7 structure predictions for template free targets. Proteins 69(Suppl. 8):57–67

    Article  CAS  PubMed  Google Scholar 

  • Jewison T, Su Y, Disfany FM, Liang Y, Knox C, MacIejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, Djoumbou Y, Liu Y, Deng L, Guo AC, Han B, Pon A, Wilson M, Rafatnia S, Liu P, Wishart DS (2014) SMPDB 2.0: Big improvements to the small molecule pathway database. Nucleic Acids Res 42:478–484

    Article  Google Scholar 

  • Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M (2021) KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 49(D1):D545–D551

    Article  CAS  PubMed  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Ahmad K, Alshammari E, Adnan M, Baig MH, Lohani M, Somvanshi P, Haque S (2015) Implication of caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. BioMed Res Int 2015:379817

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Harada R, Kobayashi M, Kobayashi N, Sode K (2010) The inhibitory effect of pyrroloquinoline quinone on the amyloid formation and cytotoxicity of truncated alpha-synuclein. Mol Neurodegener 5:1–11

    Article  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Kim J, Kobayashi N, Han S, Nakamura C, Ikebukuro K, Sode K (2006) Pyrroloquinoline quinone (PQQ) prevents fibril formation of alpha-synuclein. Biochem Biophys Res Commun 349(3):1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Kohli H, Kumar P, Ambasta RK (2021) In silico designing of putative peptides for targeting pathological protein Htt in Huntington’s disease. Heliyon 7(2):e06088

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolb P, Irwin J (2009) Docking screens: right for the right reasons? Curr Top Med Chem 9:755–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp J, Schwede T (2004) Automated protein structure homology modeling: a progress report. Pharmacogenomics 5:405–416

    Article  CAS  PubMed  Google Scholar 

  • Krull F, Korff G, Elghobashi-Meinhardt N, Knapp EW (2015) ProPairs: a data set for protein-protein docking. J Chem Inf Model 55:1495–1507

    Article  CAS  PubMed  Google Scholar 

  • Kühne R (2006) Virtual screening. In: Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin, Heidelberg

    Google Scholar 

  • Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801

    Article  CAS  PubMed  Google Scholar 

  • Lagarde N, Ben Nasr N, Jérémie A, Guillemain H, Laville V, Labib T, Zagury JF, Montes M (2014) NRLiSt BDB, the manually curated nuclear receptors ligands and structures benchmarking database. J Med Chem 57:3117–3125

    Article  CAS  PubMed  Google Scholar 

  • Langer T, Wolber G (2004) Pharmacophore definition and 3D searches. Drug Discov Today Technol 1:203

    Article  CAS  PubMed  Google Scholar 

  • Limapichat W, Yu WY, Branigan E, Lester HA, Dougherty DA (2013) Key binding interactions for memantine in the NMDA receptor. ACS Chem Neurosci 4:255–260

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  • Liu Z, Li Y, Han L, Li J, Liu J, Zhao Z, Nie W, Liu Y, Wang R (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405–412

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018) Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 13(1):23–37

    Article  CAS  PubMed  Google Scholar 

  • Liu X, IJzerman AP, van Westen GJP (2021) Computational approaches for de novo drug design: past, present, and future. In: Cartwright H (ed) Artificial neural networks. Methods in molecular biology, vol 2190. Humana, New York, NY

    Google Scholar 

  • Luzhkov VB (2010) On relation between the free-energy perturbation and Bennett’s acceptance ratio methods: tracing the influence of the energy gap. J Chem Phys 132(19):194104

    Article  CAS  PubMed  Google Scholar 

  • Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG (2020) Structure-based virtual screening: from classical to artificial intelligence. Front. Chem. 8:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maltarollo VG, Gertrudes JC, Oliveira PR, Honorio KM (2015) Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Metab Toxicol 11(2):259–271

    Article  CAS  PubMed  Google Scholar 

  • Mangal M, Sagar P, Singh H, Raghava GPS, Agarwal SM (2013) NPACT: Naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res 41:1124–1129

    Article  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590

    Article  CAS  PubMed  Google Scholar 

  • McGown A, Stopford MJ (2018) High-throughput drug screens for amyotrophic lateral sclerosis drug discovery. Expert Opin Drug Discovery 13(11):1015–1025

    Article  CAS  Google Scholar 

  • McGregor JM, Luo Z, Jiang X (2007) Virtual screening in drug discovery. In: Huang Z (ed) Drug discovery research: new frontiers in the post-genomic era. John Wiley & Sons, Inc., New York, pp 63–88

    Chapter  Google Scholar 

  • Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux CJ, Segura-Cabrera A, Hersey A, Leach AR (2019) ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res 47:D930–D940

    Article  CAS  PubMed  Google Scholar 

  • Meyer H (1899) ZurTheorie der Alkoholnarkose. Arch Expl Pathol Pharmakol 42:110–118

    Google Scholar 

  • Mohs RC, Greig NH (2017) Drug discovery and development: role of basic biological research. Alzheimers Dement (NY) 3(4):651–657

    Article  Google Scholar 

  • Muhammed MT, Aki-Yalcin E (2019) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93:12–20

    Article  CAS  PubMed  Google Scholar 

  • Overton E (1901) Studienüber die Narkose. Gustav Fischer, Jena

    Google Scholar 

  • Parascandola J (1980) Origins of the receptor theory. Trends Pharmacol Sci 1:189–192

    Article  CAS  Google Scholar 

  • Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87(11):1123–1124

    Article  CAS  Google Scholar 

  • Polanski J (2009) Receptor dependent multidimensional QSAR for modeling drug–receptor interactions. Curr Med Chem 16:3243–3257

    Article  CAS  PubMed  Google Scholar 

  • Prathipati P, Dixit A, Saxena AK (2007) Computer-aided drug design: integration of structure-based and ligand-based approaches in drug design. Curr Comput-Aid Drug Des 3:133–148

    Article  CAS  Google Scholar 

  • Rang HP, Hill RG (2013) Drug discovery and development: Facts and figures. In: Drug discovery and development: technology in transition, 2nd edn. Elsevier Ltd.

    Google Scholar 

  • Razavi SF, Khoobi M, Nadri H, Sakhteman A, Moradi A, Emami S, Foroumadi A, Shafiee A (2013) Synthesis and evaluation of 4-substituted coumarins as novel acetylcholin-esterase inhibitors. Eur J Med Chem 64:252–259

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8(4):329–351

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AJM, Holliday GL, Furnham N, Tyzack JD, Ferris K, Thornton JM (2018) Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites. Nucleic Acids Res 46:D618–D623

    Article  CAS  PubMed  Google Scholar 

  • Roth BL, Lopez E, Patel S, Ley W, Kroeze K (2000) The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist 6(4):252–262

    Article  CAS  Google Scholar 

  • Salado IG, Redondo M, Bello ML, Perez CN, Liachko NF, Kraemer BC, Miguel L, Lecourtois M, Gil C, Martinez A (2014) Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem 57(6):2755–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salman MM, Al-Obaidi Z, Kitchen P, Loreto A, Bill RM, Wade-Martins R (2021) Advances in applying computer-aided drug design for neurodegenerative diseases. Int J Mol Sci 22(9):4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samadi A, Estrada M, Pérez C, Rodríguez-Franco MI, Iriepa I, Moraleda I, Chioua M, Marco-Contelles J (2012) Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease: synthesis, biological assessment, and molecular modeling. Eur J Med Chem 57:296–301

    Article  CAS  PubMed  Google Scholar 

  • Sehgal SA, Hammad MA, Tahir RA, Akram HN, Ahmad F (2018) Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design. Curr Neuropharmacol 16:649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:1–10

    Article  Google Scholar 

  • Shirts MR, Bair E, Hooker G, Pande VS (2003) Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. Phys Rev Lett 91:1–4

    Article  Google Scholar 

  • Sieburg HB (1990) Physiological studies in silico. Stud Sci Complex 12:321–342

    Google Scholar 

  • Singla D, Sharma A, Kaur J, Panwar B, Raghava GPS (2010) BIAdb: a curated database of benzylisoquinoline alkaloids. BMC Pharmacol 10(1):1–8

    Article  Google Scholar 

  • Siramshetty VB, Eckert OA, Gohlke BO, Goede A, Chen Q, Devarakonda P, Preissner S, Preissner R (2018) Super DRUG2: a one stop resource for approved/marketed drugs. Nucleic Acids Res 46:D1137–D1143

    Article  CAS  PubMed  Google Scholar 

  • Smith RD, Clark JJ, Ahmed A, Orban ZJ, Dunbar JB, Carlson HA (2019) Updates to binding MOAD (Mother of All Databases): polypharmacology tools and their utility in drug repurposing. J Mol Biol 431:2423–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterling T, Irwin JJ (2015) ZINC 15—Ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surabhi S, Singh B (2018) Computer aided drug design: an overview. J. Drug Deliv Ther 8:504–509

    Article  CAS  Google Scholar 

  • Taft CA, Da-Silva VB, Da Silva CH (2008) Current topics in computer-aided drug design. J Pharm Sci Mar 97(3):1089–1098

    Article  CAS  Google Scholar 

  • Talele TT, Khedkar SA, Rigby AC (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • Vatansever S, Schlessinger A, Wacker D, Kaniskan HÃœ, Jin J, Zhou MM, Zhang B (2021) Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: state-of-the-arts and future directions. Med Res Rev 41:1427–1473

    Article  PubMed  Google Scholar 

  • Velankar S, van Ginkel G, Alhroub Y, Battle GM, Berrisford JM, Conroy MJ, Dana JM, Gore SP, Gutmanas A, Haslam P, Hendrickx PM, Lagerstedt I, Mir S, Fernandez MMA, Mukhopadhyay A, Oldfield TJ, Patwardhan A, Sanz-García E, Sen S, Slowley RA, Wainwright ME, Deshpande MS, Iudin A, Sahni G, Salavert TJ, Hirshberg M, Mak L, Nadzirin N, Armstrong DR, Clark AR, Smart OS, Korir PK, Kleywegt GJ (2016) PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res 44(D1):D385–D395

    Article  CAS  PubMed  Google Scholar 

  • Voigt JH, Bienfait B, Wang S, Nicklaus MC (2001) Comparison of the NCI open database with seven large chemical structural databases. J Chem Inform Comput Sci 41(3):702–712

    Article  CAS  Google Scholar 

  • Vuorinen A, Schuster D (2015) Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods 71:113–134

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    Article  CAS  PubMed  Google Scholar 

  • Yamashita F, Hashida M (2004) In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 19:327–338

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Shen Y, Liu H, Yao X (2011) Molecular dynamics simulation and free energy calculation studies of the binding mechanism of allosteric inhibitors with p38α MAP kinase. J Chem Inf Model 51:3235–3246

    Article  CAS  PubMed  Google Scholar 

  • Yero T, Rey JA (2008) Tetrabenazine (Xenazine), an FDA-approved treatment option for huntington’s disease-related chorea. Pharm Ther 33(12):690–694

    Google Scholar 

  • Young DC (2009) Computational drug design, 1st edn. John Wiley & Sons, Canada NJ

    Book  Google Scholar 

  • Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Des 19:2326–2333

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Zheng F, Zhan CG (2018) Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J 20(3):54

    Article  PubMed  Google Scholar 

  • Zheng G, Xue W, Wang P, Yang F, Li B, Li X, Li Y, Yao X, Zhu F (2016) Exploring the inhibitory mechanism of approved selective norepinephrine reuptake inhibitors and reboxetine enantiomers by molecular dynamics study. Sci Rep 6:1–13

    Google Scholar 

  • Zwanzig RW (1955) High-temperature equation of state by a perturbation method. II. Polar gases. J Chem Phys 23:1915–1922

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunasanahally P. Gurushankara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anupama, K.P., Antony, A., Shilpa, O., Gurushankara, H.P. (2022). In Silico Techniques: Powerful Tool for the Development of Therapeutics. In: Elumalai, P., Lakshmi, S. (eds) Functional Foods and Therapeutic Strategies for Neurodegenerative Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-6703-9_11

Download citation

Publish with us

Policies and ethics