Skip to main content

Automobile Rim Weld Detection Using the Improved YOLO Algorithm

  • Conference paper
  • First Online:
Intelligent Equipment, Robots, and Vehicles (LSMS 2021, ICSEE 2021)

Abstract

At present, the production efficiency of automobile rim in the industrial field is affected by the detection process of automobile rim quality after steel forging. The traditional way is to check welding position manually, which can facilitate the air tightness detection after weld is pressurized. However, this can largely affect production efficiency. By introducing computer vision and image processing, the position of the rim weld can be accurately located, which is more accurate and time-saving. In order to ensure high accuracy and speed of detection, we propose an automobile rim weld detection algorithm YOLOv4-head2-BiFPN on the basis of YOLOv4 algorithm. The experimental results show that, for one thing, it does not affect the detection speed by strengthening feature fusion and removing redundant detection heads. For another, the AP75 of the improved YOLOv4-head2-BiFPN algorithm in the automobile rim weld detection task is 7.7% higher than that of the original YOLOv4 algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  2. Bochkovskiy, A., Wang, C.Y., Liao H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  3. Li, B., Wang, C., Wu, J., et al.: Surface defect detection of aeroengine components based on improved YOLOv4 algorithm. In: Laser & Optoelectronics Progress (2021)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. J. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Google Scholar 

  5. Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017)

    Google Scholar 

  6. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 821–830 ( 2019)

    Google Scholar 

  7. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: CutMix: regularization strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6022–6031 (2019)

    Google Scholar 

  8. Ghiasi, G., Lin, T., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7029–7038 (2019)

    Google Scholar 

  9. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9196–9205 (2019)

    Google Scholar 

  10. Tan, M.X., Pang, R.M., Le, Q.: EfficientDet: scalable and efficient object detection. In: The IEEE Conference on Computer Vision and pattern Recognition (2020)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. J. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Google Scholar 

  12. He, K., Zhang, X.Y., Ren, S.Q., et al.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  13. Jiang, B.R., Luo, R.X., Mao, J.Y., et al.: Acquisition of localization confidence for accurate object detection. In: The European Conference on Computer Vision (2014)

    Google Scholar 

  14. Zheng, Z., Wang, P., Liu, W., et al.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI, pp. 12993–13000 (2020)

    Google Scholar 

  15. Wu, J., Ma, J., Zhao, Y.H., et al.: Apple detection in complex scene using the improved YOLOv4 model. J. Agronomy 11(3), 476 (2021)

    Article  Google Scholar 

  16. Hao, R.Y., Lu, B.Y., Cheng, Y., et al.: A steel surface defect inspection approach towards smart industrial monitoring. J. Intell. Manuf. (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, Z., Zhao, S., Zhao, F., Ma, T., Li, Z. (2021). Automobile Rim Weld Detection Using the Improved YOLO Algorithm. In: Han, Q., McLoone, S., Peng, C., Zhang, B. (eds) Intelligent Equipment, Robots, and Vehicles. LSMS ICSEE 2021 2021. Communications in Computer and Information Science, vol 1469. Springer, Singapore. https://doi.org/10.1007/978-981-16-7213-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7213-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7212-5

  • Online ISBN: 978-981-16-7213-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics