Skip to main content

One-Class Classification with Noise-Based Data Augmentation for Industrial Anomaly Detection

  • Conference paper
  • First Online:
Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications (FDSE 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1500))

Included in the following conference series:

  • 1247 Accesses

Abstract

Deep learning based approaches have shown promising results for anomaly detection. One of them is the one-class classification, a typical method treated as an unsupervised learning model. In this problem, a number of unlabeled samples are given. The model will learn a description of the unlabeled samples. The description is then used to detect an unusual sample and treat it as an anomaly object. It, however, should be better to learn an anomaly detector if we can have some labeled samples which include both normal and anomalous, to leverage the description of unlabeled samples. Learning with these labeled samples for anomaly detection is also known as the semi-supervised method. In this paper, we present an improvement of the deep SAD, a semi-supervised model, for anomaly detection in industrial systems. We propose to use synthetic anomalies which can be generated using noises. Two noise models are used, including the confetti and polygon noises, to augment the anomalies for training the model. Experiments will be conducted for the standard dataset MVTec-AD to show that our model outperforms related baseline models, especially with a small dataset available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T. P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: ACCV, pp. 622–637 (2018)

    Google Scholar 

  2. Bergman, L., Hoshen, Y.: Classification-based anomaly detection for general data. In: ICLR (2020)

    Google Scholar 

  3. Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vis. 129(4), 1038–1059 (2021). https://doi.org/10.1007/s11263-020-01400-4

    Article  Google Scholar 

  4. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv:1901.03407 (2019)

  5. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: NeurIPS 31 (2018)

    Google Scholar 

  6. Huang, C., Cao, J., Ye, F., Li, M., Zhang, Y., Lu, C.: Inverse-transform autoencoder for anomaly detection. arXiv preprint arXiv:1911.10676 (2019)

  7. Kumagai, A., Iwata, T., Fujiwara, Y.: Semi-supervised anomaly detection on attributed graphs. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021)

    Google Scholar 

  8. Kim, J.S., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13, 2529–2565 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Liznerski, P., Ruff, L., Vandermeulen R.A., Franks, B.J., Kloft, M., Müller, K.-R.: Explainable deep one-class classification. In: ICLR (2021)

    Google Scholar 

  10. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: ICDM, pp. 413–422 (2008)

    Google Scholar 

  11. Liu, W., et al.: Towards visually explaining variational autoencoders. In: CVPR, pp. 8642–8651 (2020)

    Google Scholar 

  12. Lu, Y., Xu, P.: Anomaly detection for skin disease images using variational autoencoder. arXiv preprint arXiv:1807.01349 (2018)

  13. Minhas, M., Zelek, J.: Semi-supervised anomaly detection using autoencoders. J. Comput. Vis. Imaging Syst. 5(1), 3 (2020)

    Google Scholar 

  14. Moya, M.M., Koch, M.W., Hostetler, L.D.: One-class classifier networks for target recognition applications. In: Proceedings World Congress on Neural Networks, pp. 797–801 (1993)

    Google Scholar 

  15. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using GANs with constrained latent representations. In: CVPR, pp. 2898–2906 (2019)

    Google Scholar 

  16. Ruff, L., Vandermeulen, R., et al.: Deep one-class classification. In: ICML, vol. 80, pp. 4393–4402 (2018)

    Google Scholar 

  17. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: ICLR (2020)

    Google Scholar 

  18. Sabokrou, M., Khalooei, M., Fathy, M., Adeli, E.: Adversarially learned one-class classifier for novelty detection. In: CVPR, pp. 3379–3388 (2018)

    Google Scholar 

  19. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  20. Spahr, A., Bozorgtabar, B., Thiran, J-P.: Self-taught semi-supervised anomaly detection on upper limb x-rays. CoRR abs/2102.09895 (2021)

    Google Scholar 

  21. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54, 45–66 (2004)

    Article  Google Scholar 

  22. Vandermeulen, R. A., Scott, C.: Consistency of robust kernel density estimators. In COLT, pp. 568–591 (2013)

    Google Scholar 

  23. Wang, T., et al.: Generative neural networks for anomaly detection in crowded scenes. IEEE Trans. Inf. Forensics Secur. 14(5), 1390–1399 (2019)

    Article  Google Scholar 

  24. Zhu, C., Sundaram, G., Snoeyink, J., Mitchelld, J.S.B.: Generating random polygons with given vertices. Comput. Geom. 6(5), 277–290 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is funded by Saigon University, Ho Chi Minh City, Vietnam under the grant number [CS2021-13].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Hong Trang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anh, N.T.H., Loan, D.N.N., Trang, L.H. (2021). One-Class Classification with Noise-Based Data Augmentation for Industrial Anomaly Detection. In: Dang, T.K., Küng, J., Chung, T.M., Takizawa, M. (eds) Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications. FDSE 2021. Communications in Computer and Information Science, vol 1500. Springer, Singapore. https://doi.org/10.1007/978-981-16-8062-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8062-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8061-8

  • Online ISBN: 978-981-16-8062-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics