Skip to main content

Overview of Living Cell Delivery Method Based on Biological Probe

  • Conference paper
  • First Online:
Proceedings of the Eighth Asia International Symposium on Mechatronics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 885))

  • 2207 Accesses

Abstract

Intracellular delivery strategies are critical to the application of gene delivery, cell therapy, induced pluripotent stem cells, etc. Traditional methods such as viruses, liposomes, and electroporation always lead to high toxicity and cell damage, therefore, their applications can be limited. The mechanical method based on biological probes is less harmful to cells and keep the cell activities. Molecules can be delivered into the living cell quite accurately as well. So, the mechanical method is getting more and more attention. Biological probes methods include microinjection, nanotips and nanoneedle array, the following overview introduces the characteristics and applications of these three methods. In the end, we compared the advantages and disadvantages of these three methods and we make the prospects for subsequent development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart, M.P.: Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem. Rev. 118(16), 7409–7531 (2018)

    Article  Google Scholar 

  2. Ding, X., Stewart, M.P., Sharei, A., Weaver, J.C., Langer, R.S., Jensen, K.F.: High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. (2017). https://doi.org/10.1038/s41551-017-0039

    Article  Google Scholar 

  3. Kang, W.: Micro- and nanoscale technologies for delivery into adherent cells. Trends Biotechnol. 34(8), 665–678 (2016)

    Article  Google Scholar 

  4. Han, S.W.: Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle. J. Nanosci. Nanotechnol. 14(1), 57–70 (2014)

    Article  Google Scholar 

  5. Yum, K.: Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochim. Biophys. Acta 1810(3), 330–338 (2011)

    Article  Google Scholar 

  6. Gao, Y.: One-dimensional nanoprobes for single-cell studies. (1748–6963 (Electronic))

    Google Scholar 

  7. Fan, N.: The insertion mechanism of a living cell determined by the stress segmentation effect of the cell membrane during the tip-cell interaction. Small 14(22), e1703868 (2018)

    Article  Google Scholar 

  8. Morshedi Rad, D.: A comprehensive review on intracellular delivery. Adv. Mater. 33(13), e2005363 (2021)

    Article  Google Scholar 

  9. Barber, M.A.: A technic for the inoculation of bacteria and other substances into living cells. J. Infect. Dis. 8(3), 348–360 (1911)

    Article  Google Scholar 

  10. Celis, J.E.: Microinjection of somatic cells with micropipettes: comparison with other transfer techniques. Biochem. J. 223(2), 281–291 (1984)

    Article  Google Scholar 

  11. Chambers, R.: New apparatus and methods for the dissection and injection of living cells. Anat. Rec. 24, 1–19 (1922)

    Article  Google Scholar 

  12. Johnson, H.W.: A simple micropipette holder. J. Bacteriol. 8(6), 573–575 (1923)

    Article  Google Scholar 

  13. Crossway, A.: Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. MGG 202(2), 179–185 (1986)

    Article  Google Scholar 

  14. Briggs, R., King, T.J.: Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc. Natl. Acad. Sci. 38(5), 455–463 (1952)

    Article  Google Scholar 

  15. Rodolfa, K.T.: Two-component graded deposition of biomolecules with a double-barreled nanopipette. Angew. Chem. Int. Ed. Engl. 44(42), 6854–6859 (2005)

    Article  Google Scholar 

  16. Adam Seger, R.: Voltage controlled nano-injection system for single-cell surgery. Nanoscale 4(19), 5843–5846 (2012)

    Article  Google Scholar 

  17. Cadinu, P.: Double barrel nanopores as a new tool for controlling single-molecule transport. Nano Lett. 18(4), 2738–2745 (2018)

    Article  Google Scholar 

  18. Zhang, Y.: Spearhead nanometric field-effect transistor sensors for single-cell analysis. ACS Nano 10(3), 3214–3221 (2016)

    Article  Google Scholar 

  19. Takami, T.: Nanopipette exploring nanoworld. Nano Convergence 1(1), 17 (2014)

    Article  Google Scholar 

  20. Chi, Z.: A review of recent advances in robotic cell microinjection. IEEE Access 8, 8520–8532 (2020)

    Article  Google Scholar 

  21. Roder, P.., Hille, C..: Local tissue manipulation via a force- and pressure-controlled AFM micropipette for analysis of cellular processes. Sci. Rep. 8(1), 5892 (2018)

    Article  Google Scholar 

  22. Ammi, M., Ferreira, A.: Biological cell injection visual and haptic interface. Adv. Robot. 20(3), 283–304 (2012)

    Article  Google Scholar 

  23. Kwon, H.: Spatio-temporally controlled transfection by quantitative injection into a single cell. Biomaterials 67, 225–231 (2015)

    Article  Google Scholar 

  24. Lu, Z.: A micromanipulation system for single cell deposition. In: 2010 IEEE International Conference on Robotics and Automation, pp. 494–499 (2010)

    Google Scholar 

  25. Ladjal, H.: Micro-to-nano biomechanical modeling for assisted biological cell injection. IEEE Trans. Biomed. Eng. 60(9), 2461–2471 (2013)

    Article  Google Scholar 

  26. Ivanov, A.P.: On-demand delivery of single dna molecules using nanopipets. ACS Nano 9(4), 3587–3595 (2015)

    Article  Google Scholar 

  27. Wang, Z.: Nanopipettes: a potential tool for DNA detection. Analyst 144(17), 5037–5047 (2019)

    Article  Google Scholar 

  28. Freedman, K.J., Otto, L.M., Ivanov, A.P., Barik, A., Sang-Hyun, O., Edel, J.B.: Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. (2016). https://doi.org/10.1038/ncomms10217

    Article  Google Scholar 

  29. Hernandez-Ainsa, S.: Lipid-coated nanocapillaries for DNA sensing. Analyst 138(1), 104–106 (2013)

    Article  Google Scholar 

  30. Sze, J.Y.: Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing. Analyst 140(14), 4828–4834 (2015)

    Article  Google Scholar 

  31. Xie, P.: Local electrical potential detection of DNA by nanowire-nanopore sensors. Nat. Nanotechnol. 7(2), 119–125 (2011)

    Article  Google Scholar 

  32. Li, J.: Ion-beam sculpting at nanometre length scales. Nature 412(6843), 166–169 (2001)

    Article  Google Scholar 

  33. Crick, C.R.: Selectively sized graphene-based nanopores for in situ single molecule sensing. ACS Appl. Mater. Interfaces 7(32), 18188–18194 (2015)

    Article  Google Scholar 

  34. Chen, P.: Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4(7), 1333–1337 (2004)

    Article  Google Scholar 

  35. Ying, Y.L.: Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J. Am. Chem. Soc. 140(16), 5385–5392 (2018)

    Article  Google Scholar 

  36. Hanif, S., et al.: Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Analyt. Chem. 89(4), 2522–2530 (2017)

    Article  Google Scholar 

  37. Loh, O.: Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. Small 5(14), 1667–1674 (2009)

    Article  Google Scholar 

  38. Hennig, S.: Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 15(2), 1374–1381 (2015)

    Article  Google Scholar 

  39. Mohseni, H.: Photothermal nanoblade for single cell surgery and cargo delivery. Biosens. Nanomed. V (2012)

    Google Scholar 

  40. Korchev, Y.E.: Scanning ion conductance microscopy of living cells. Biophys. J . 73(2), 653–658 (1997)

    Article  Google Scholar 

  41. Lin, T.E.: Electrochemical imaging of cells and tissues. Chem. Sci. 9(20), 4546–4554 (2018)

    Article  Google Scholar 

  42. Saha-Shah, A.: Nanopipettes: probes for local sample analysis. Chem. Sci. 6(6), 3334–3341 (2015)

    Article  Google Scholar 

  43. Chou, P.H.: Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma (0003–2700 (Print))

    Google Scholar 

  44. Morris, C.A.: Applications of nanopipettes in the analytical sciences. Analyst 135(9), 2190–2202 (2010)

    Article  Google Scholar 

  45. Han, S.W.: High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine 4(3), 215–225 (2008)

    Article  Google Scholar 

  46. Yum, K.: Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale 2(3), 363–372 (2010)

    Article  Google Scholar 

  47. Park, K.: Suppressing mosaicism by Au nanowire injector-driven direct delivery of plasmids into mouse embryos. Biomaterials 138, 169–178 (2017)

    Article  Google Scholar 

  48. Yoo, S.M.: Electrotriggered, spatioselective, quantitative gene delivery into a single cell nucleus by Au nanowire nanoinjector. Nano Lett. 13(6), 2431–2435 (2013)

    Article  Google Scholar 

  49. Schrlau, M.G., Bau, H.H.: Carbon nanopipettes for cell surgery. J. Assoc. Lab. Autom. 15(2), 145–151 (2010)

    Article  Google Scholar 

  50. Vakarelski, I.U.: Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 23(22), 10893–10896 (2007)

    Article  Google Scholar 

  51. Guillaume-Gentil, O.: Force-controlled fluidic injection into single cell nuclei. Small 9(11), 1904–1907 (2013)

    Article  Google Scholar 

  52. Liu, H.: In situ mechanical characterization of the cell nucleus by atomic force microscopy. ACS Nano 8(4), 3821–3828 (2014)

    Article  Google Scholar 

  53. Simonis, M.: Survival rate of eukaryotic cells following electrophoretic nanoinjection. Sci. Rep. 7, 41277 (2017)

    Article  Google Scholar 

  54. Pan, R.: Nanokit for single-cell electrochemical analyses. Proc. Natl. Acad. Sci. U. S. A. 113(41), 11436–11440 (2016)

    Article  Google Scholar 

  55. Yan, R.: Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7(3), 191–196 (2011)

    Article  Google Scholar 

  56. Singhal, R.: Multifunctional carbon-nanotube cellular endoscopes. Nat. Nanotechnol. 6(1), 57–64 (2011)

    Article  MathSciNet  Google Scholar 

  57. Kumari, M., Liu, C.-H., Wu, W.-C., Wang, C.-C.: Gene delivery using layer-by-layer functionalized multi-walled carbon nanotubes: design, characterization, cell line evaluation. J. Mater. Sci. 56(11), 7022–7033 (2021)

    Article  Google Scholar 

  58. Stewart, M.P.: In vitro and ex vivo strategies for intracellular delivery. Nature 538(7624), 183–192 (2016)

    Article  Google Scholar 

  59. Higgins, S.G.: High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv. Mater. 32(9), e1903862 (2020)

    Article  Google Scholar 

  60. Sun, M., Duan, X.: Recent advances in micro/nanoscale intracellular delivery. Nanotechnol. Precis. Eng. 3(1), 18–31 (2020)

    Article  Google Scholar 

  61. Sero, J.E., Stevens, M.M.: Nanoneedle-based materials for intracellular studies. In: Fontana, F., Santos, H.A. (eds.) Bio-Nanomedicine for Cancer Therapy. AEMB, vol. 1295, pp. 191–219. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58174-9_9

    Chapter  Google Scholar 

  62. Gonzalez-Rodriguez, D.: Mechanical criterion for the rupture of a cell membrane under compression. Biophys. J. 111(12), 2711–2721 (2016)

    Article  Google Scholar 

  63. Xie, X.: Determining the time window for dynamic nanowire cell penetration processes. ACS Nano 9(12), 11667–11677 (2015)

    Article  Google Scholar 

  64. Liu, J.: Intracellular labeling with extrinsic probes: delivery strategies and applications. Small 16(22), e2000146 (2020)

    Article  Google Scholar 

  65. Chen, X.: A diamond nanoneedle array for potential high-throughput intracellular delivery. Adv. Healthc. Mater. 2(8), 1103–1107 (2013)

    Article  Google Scholar 

  66. Peer, E.: Hollow nanoneedle array and its utilization for repeated administration of biomolecules to the same cells. ACS Nano 6(6), 4940–4946 (2012)

    Article  Google Scholar 

  67. Zhao, W.: Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12(8), 750–756 (2017)

    Article  Google Scholar 

  68. Buch-Manson, N.: Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9(17), 5517–5527 (2017)

    Article  Google Scholar 

  69. Kim, W.: Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129(23), 7228–7229 (2007)

    Article  Google Scholar 

  70. Shalek, A.K.: Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett. 12(12), 6498–6504 (2012)

    Article  Google Scholar 

  71. Kim, K.-H.: Functionalized inclined-GaN based nanoneedles. J. Ind. Eng. Chem. 59, 184–191 (2018)

    Article  Google Scholar 

  72. Chiappini, C.: Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14(5), 532–539 (2015)

    Article  Google Scholar 

  73. Chiappini, C.: Nanoneedle-based sensing in biological systems. ACS Sens. 2(8), 1086–1102 (2017)

    Article  Google Scholar 

  74. Shalek, A.K.: Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. U. S. A. 107(5), 1870–1875 (2010)

    Article  Google Scholar 

  75. Buch-Månson, N.: Towards a better prediction of cell settling on nanostructure arrays-simple means to complicated ends. Adv. Func. Mater. 25(21), 3246–3255 (2015)

    Article  Google Scholar 

  76. Zhou, J.: The effects of surface topography of nanostructure arrays on cell adhesion. Phys. Chem. Chem. Phys. 20(35), 22946–22951 (2018)

    Article  Google Scholar 

  77. He, G., Ning, H., Xu, A.M., Li, X., Zhao, Y., Xie, X.: Nanoneedle platforms: the many ways to pierce the cell membrane. Adv. Function. Mater. 30(21), 1909890 (2020)

    Article  Google Scholar 

  78. Xie, X.: Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7(5), 4351–4358 (2013)

    Article  Google Scholar 

  79. Huang, D.: Continuous vector-free gene transfer with a novel microfluidic chip and nanoneedle array. Curr. Drug Deliv. 16(2), 164–170 (2019)

    Article  Google Scholar 

  80. Dipalo, M.: Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17(6), 3932–3939 (2017)

    Article  Google Scholar 

  81. Matsumoto, D.: Mechanoporation of living cells for delivery of macromolecules using nanoneedle array. J. Biosci. Bioeng. 122(6), 748–752 (2016)

    Article  Google Scholar 

  82. Wang, Y.: Poking cells for efficient vector-free intracellular delivery. Nat. Commun. 5, 4466 (2014)

    Article  Google Scholar 

  83. Wang, Z.: Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Lett. 15(10), 7058–7063 (2015)

    Article  Google Scholar 

  84. Kawamura, R.: A new cell separation method based on antibody-immobilized nanoneedle arrays for the detection of intracellular markers. Nano Lett. 17(11), 7117–7124 (2017)

    Article  Google Scholar 

  85. Matsumoto, D.: Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells. Sci. Rep. 5, 15325 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Natural Science Foundation of China (52005084, 51975107), Fundamental Research Funds for the Central Universities (No. ZYGX2019J037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Peng .

Editor information

Editors and Affiliations

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, N., Zou, J., Feng, G., Peng, B. (2022). Overview of Living Cell Delivery Method Based on Biological Probe. In: Duan, B., Umeda, K., Kim, Cw. (eds) Proceedings of the Eighth Asia International Symposium on Mechatronics. Lecture Notes in Electrical Engineering, vol 885. Springer, Singapore. https://doi.org/10.1007/978-981-19-1309-9_192

Download citation

Publish with us

Policies and ethics