Skip to main content

High-k Dielectric Influence on Recessed-Gate Gallium Oxide MOSFETs

  • Conference paper
  • First Online:
Micro and Nanoelectronics Devices, Circuits and Systems

Abstract

This paper reports on the effects of different dielectrics on recessed-gate gallium oxide MOSFETs in terms of analog and RF performance. Different gate dielectrics like \({\text {SiO}}_{2}, {\text {Al}}_{2}{\text {O}}_{3}\) and \({\text {HfO}}_{2} \) are considered as gate dielectric material, and their effects are analysed. High-k dielectric \({\text {HfO}}_{2} \) provides better electrical performance compared to other dielectric materials. High-k dielectric offers good threshold voltage and better DIBL, output conductance, low leakage current with increased drain current response which can be traded-off with a bit increased intrinsic capacitance, GBW and low cut-off frequency. High-k dielectric-based gallium oxide MOSFETs show its potential applications in high-voltage, high-power switching applications with a good \( I_{\text {on}}/I_{\text {off}} \) ratio of \(6.75\times 10^{9}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearton S, Yang J, Cary IV PH, Ren F, Kim J, Tadjer MJ et al (2018) A review of ga2o3 materials, processing, and devices. Appl Phys Rev 5(1):011301

    Google Scholar 

  2. Higashiwaki M, Jessen GH (2018) Guest editorial: the dawn of gallium oxide microelectronics, 060401

    Google Scholar 

  3. Suzuki K, Tanaka T, Tosaka Y, Horie H, Arimoto Y (1993) Scaling theory for double-gate SOI MOSFET’s. IEEE Trans Electron Dev 40(12):2326–2329. https://doi.org/10.1109/16.249482 Dec

    Article  Google Scholar 

  4. Wong H-P (2002) Beyond the conventional transistor IBM J Res Devel 46(2.3):133–168. https://doi.org/10.1147/rd.462.0133

  5. Ferain I, Colinge C, Colinge JP (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479:310–316. https://doi.org/10.1038/nature10676

  6. Chabak KD, McCandless JP, Moser NA, Green AJ, Mahalingam K, Crespo A et al (2017) Recessed-gate enhancement-mode \(\beta \)-ga2o3 mosfets. IEEE Electron Dev Lett 39(1):67–70

    Article  Google Scholar 

  7. Chabak KD, Leedy KD, Green AJ, Mou S, Neal AT, Asel T, Heller ER et al (2019) Lateral \(\beta \)-Ga2O3 field effect transistors. Semicond Sci Technol 35(1):013002. https://doi.org/10.1088/1361-6641/ab55fe

    Article  Google Scholar 

  8. Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I (2006) Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications. IEEE Trans Electron Dev 53(2):356–362:013002. https://doi.org/10.1109/TED.2005.862708

  9. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2012) Gallium oxide(ga2o3) metal-semiconductor field-effect transistors on single-crystal \(\beta \)-ga2o3 (010) substrates. Appl Phys Lett 100(1):013504. https://doi.org/10.1063/1.3674287

    Article  Google Scholar 

  10. Tetzner K, Bahat E, Treidel OH, Popp A, Bin Anooz S, Wagner G, Thies A et al Lateral 1.8 kV \(\beta \)-Ga2O3 MOSFET with 155 MW/cm2 power Figure of merit. IEEE Electron Dev Lett 40(9):1503–1506. https://doi.org/10.1109/LED.2019.2930189

  11. Mun JK, Cho K, Chang W, Jung HW, Do J (2019) 2.32 kV breakdown voltage lateral \(\beta \)-Ga2O3 MOSFETs with source-connected field plate. ECS J SolidState Sci Technol 8(7):Q3079. https://doi.org/10.1149/2.0151907jss

  12. Wong MH, Nakata Y, Kuramata A, Yamakoshi S, Higashiwaki M (2017) Enhancement-mode ga2o3 mosfets with si-ion-implanted source and drain. Appl Phys Express 10(4):041101. https://doi.org/10.7567/APEX.10.041101

    Article  Google Scholar 

  13. Zhou H, Si M, Alghamdi S, Qiu G, Yang L, Peide DY (2016) High performance depletion/enhancement-mode \(\beta \)-ga2o3 on insulator (gooi) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett 38(1):103–106, 041101. https://doi.org/10.1109/LED.2016.2635579

  14. Chabak K, Moser N, Green A, Walker D, Tetlak S et al (2016) Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) \(\beta \)-Ga2O3 substrate with high breakdown voltage. Appl Phys Lett 109:213501. https://doi.org/10.1063/1.4967931

    Article  Google Scholar 

  15. Kachhawa P, Chaturvedi N (2021) A simulation approach for depletion and enhancement mode in \(\beta \)-Ga2O3 MOSFET. IETE Tech Rev 1–9. https://doi.org/10.1080/02564602.2021.2004936

  16. Zeng K, Jia Y, Singisetti U (2016) Interface state density in atomic layer deposited SiO2/\(\beta \)Ga2O3 (-201) MOSCAPs IEEE Electron Device Lett 37:906–909

    Google Scholar 

  17. Zhou H, Alghmadi S, Si M, Qiu G, Peide DY (2016) Al2O3/\(\beta \)-Ga2O3 (-201) interface improvement through piranha pretreatment and postdeposition annealing. IEEE Electron Device Lett 37:1411–1414

    Google Scholar 

  18. Shahin DI et al (2018) Electrical characterization of ALD HfO2 high-k dielectrics on (201) \(\beta \)-Ga2O3 Appl. Phys Lett 112:042107

    Google Scholar 

  19. Pradhan KP, Mohapatra SK, Sahu PK, Behera DK (2014) Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron J 45:144–151, 042107. https://doi.org/10.1016/j.mejo.2013.11.016

  20. Yadavaz N, Chauhan RK (2020) Review-recent advances in designing gallium oxide MOSFET for RF application. ECS J Solid State Sci Technol 9:065010

    Google Scholar 

Download references

Acknowledgements

This work was supported by the CSIR-SRF Direct Scheme at Central Electronics Engineering Research Institute [Grant Number-31/0007(11993)/2021-EMR-I, HCP-0012]. The authors would like to acknowledge Director, CSIR-CEERI, for providing the resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pharyanshu Kachhawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kachhawa, P., Chaturvedi, N. (2023). High-k Dielectric Influence on Recessed-Gate Gallium Oxide MOSFETs. In: Lenka, T.R., Misra, D., Fu, L. (eds) Micro and Nanoelectronics Devices, Circuits and Systems. Lecture Notes in Electrical Engineering, vol 904. Springer, Singapore. https://doi.org/10.1007/978-981-19-2308-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-2308-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-2307-4

  • Online ISBN: 978-981-19-2308-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics