Skip to main content

An Overview of Nickel Utilization from Laterite Ore

  • Chapter
  • First Online:
Advances and Innovations in Ferronickel-Making

Abstract

Ferronickel is an important alloy and intermediate product for manufacturing many advanced materials with versatile functions, e.g., stainless steel. Its properties and performance are mainly relied on the content of nickel, which is now primarily extracted from laterite ore. This chapter provides an overview of nickel utilization from laterite ore. Based on a brief introduction of properties of metallic nickel, it summarizes the applications of nickel, demand of nickel, resources of nickel, and metallurgical processes of laterite ore, in which the rotary kiln-electric furnace (RKEF) smelting process is dominant for production of ferronickel. Lastly, it discusses the challenges and development of ferronickel-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nickel Institute (2022) About nickel. https://nickelinstitute.org/about-nickel/. Accessed 4 Jan 2022

  2. Hodgkiess T, Mantzavinos D (1999) Corrosion of copper-nickel alloys in pure water. Desalination 126:129–137

    Article  Google Scholar 

  3. Metikoš-Huković M, Babić R, Škugor I et al (2011) Copper-nickel alloys modified with thin surface films: corrosion behaviour in the presence of chloride ions. Corros Sci 53:347–352

    Google Scholar 

  4. Metikoš-Huković M, Škugor I, Grubač Z et al (2010) Complexities of corrosion behaviour of copper–nickel alloys under liquid impingement conditions in saline water. Electrochim Acta 55(9):3123–3129

    Article  Google Scholar 

  5. Al-Subaie KZ, Hodgkiess T (2003) Corrosion of copper-nickel alloys in simulated vapourside environments. Desalination 158:43–50

    Article  Google Scholar 

  6. Bennett LH, Streever RL (1962) Internal magnetic fields in nickel-rich nickel-cobalt alloys. In: Osborn JA (eds) Proceedings of the seventh conference on magnetism and magnetic materials. Springer, Boston, MA, pp 1093–1094

    Google Scholar 

  7. Jiles DC, Chang TT, Hougen DR et al (1988) Stress-induced changes in the magnetic properties of some nickel-copper and nickel-cobalt alloys. J Appl Phys 64:3620–3628

    Article  Google Scholar 

  8. Liu Y, Zhou WM, Qi X et al (2001) Magneto-shape-memory effect in Co–Ni single crystals. Appl Phys Lett 78:3660–3662

    Article  Google Scholar 

  9. Song YW, Shan DY, Chen RS et al (2008) A novel dual nickel coating on AZ91D magnesium alloy. T Nonferr Metal Soc 18:s339–s343

    Article  Google Scholar 

  10. Apachitei I, Duszczyk J (2000) Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance. Surf Coat Tech 132(1):89–98

    Article  Google Scholar 

  11. Gavrila M, Millet JP, Mazille H et al (2000) Corrosion behaviour of zinc–nickel coatings, electrodeposited on steel. Surf Coat Tech 123(2–3):164–172

    Article  Google Scholar 

  12. Rongeat C, Grosjean MH, Ruggeri S (2006) Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries. J Power Sources 158(1):747–753

    Article  Google Scholar 

  13. Shangguan EB, Chang ZR, Tang HW et al (2010) Synthesis and characterization of high-density non-spherical Ni(OH)2 cathode material for Ni–MH batteries. Int J Hydrogen Energ 35(18):9716–9724

    Article  Google Scholar 

  14. Li WD, Liu XM, Xie Q et al (2020) Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: an in-depth diagnostic study. Chem Mater 32(18):7796–7804

    Article  Google Scholar 

  15. Zhang DK, Liu Y, Wu L et al (2019) Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material. Electrochim Acta 328:135086

    Google Scholar 

  16. Chen KD, Zhao FQ, Hao H et al (2019) Selection of lithium-ion battery technologies for electric vehicles under China’s new energy vehicle credit regulation. Energy Procedia 158:3038–3044

    Article  Google Scholar 

  17. Luo J, Li GH, Rao MJ et al (2021) Control of slag formation in the electric furnace smelting of ferronickel for an energy-saving production. J Clean Prod 287:125082

    Article  Google Scholar 

  18. Holappa L (2013) Handbook of ferroalloys: theory and technology. In: Gasik M (ed) Chapter 2—Basics of ferroalloys. Elsevier Ltd., Kidlington, pp 9–28

    Google Scholar 

  19. Tangstad M (2013) Handbook of ferroalloys: theory and technology. In: Gasik M (ed) Chapter 7—Manganese ferroalloys technology. Elsevier Ltd., Kidlington, pp 221–266

    Google Scholar 

  20. Gasik M (2013) Handbook of ferroalloys: theory and technology. In: Gasik M (ed) Chapter 8—Technology of chromium and its ferroalloys. Elsevier Ltd., Kidlington, pp 267–316

    Google Scholar 

  21. Janus A, Kurzawa A (2013) Effect of nickel equivalent on austenite transition ratio in Ni-Mn-Cu cast iron. Arch Foundry Eng 13(2):53–58

    Article  Google Scholar 

  22. Medyński D, Janus A (2015) Effect of nickel equivalent on structure and corrosion resistance of nodular cast iron Ni-Mn-Cu. Arch Foundry Eng 15(1):69–74

    Google Scholar 

  23. International Nickel Study Group (INSG) (2015) World nickel statistics. http://www.insg.org/stats.aspx. Accessed 27 Aug 2020

  24. World Bureau of Metal Statistics (WBMS) (2022) Press release February 2022: January to December 2021 metals balances. https://world-bureau.co.uk/news/january-to-december-2021-metals-balances/. Accessed 16 Feb 2022

  25. U.S. Geological Survey (2021) Mineral commodity summaries 2021. https://www.usgs.gov/media/files/mineral-commodity-summaries-2021. Accessed 26 Aug 2021

  26. Hoatson DM, Jaireth S, Jaques AL (2006) Nickel sulfide deposits in Australia: characteristics, resources, and potential. Ore Geol Rev 29(3–4):177–241

    Article  Google Scholar 

  27. Chao HX, Yang ZH, Su SR et al (2013) A comparison of mineralization study between Zhou’an and Jinchuan copper-nickel sulfide deposit. Acta Geol Sin—Engl 87(Supp):678

    Google Scholar 

  28. Fullagar PK, Livelybrooks DW, Zhang P et al (2000) Radio tomography and borehole radar delineation of the McConnell nickel sulfide deposit, Sudbury, Ontario, Canada. Geophysics 65(6):1920–1930

    Article  Google Scholar 

  29. Rao MJ, Li GH, Jiang T et al (2013) Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: a review. JOM 65:1573–1583

    Article  Google Scholar 

  30. Norgate T, Jahanshahi S (2011) Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner Eng 24:698–707

    Article  Google Scholar 

  31. Highlands Pacific Limited (HPL) & Ramu NiCo Management (MCC) Limited (2015) Update resources of the Ramu nickel-cobalt operation, PNG. https://www.asx.com.au/asxpdf/20160322/pdf/4360r7spbn1qwp.pdf. Accessed 2 Jan 2022

  32. Senanayake G, Childs J, Akerstrom BD et al (2011) Reductive acid leaching of laterite and metal oxides—a review with new data for Fe(Ni, Co)OOH and a limonitic ore. Hydrometallurgy 110:13–32

    Article  Google Scholar 

  33. Li GH, Rao MJ, Jiang T et al (2011) Leaching of limonitic laterite ore by acidic thiosulfate solution. Miner Eng 24:859–863

    Article  Google Scholar 

  34. Li GH, Zhi Q, Rao MJ et al (2013) Effect of basicity on sintering behavior of saprolitic nickel laterite in air. Powder Technol 249:212–219

    Article  Google Scholar 

  35. Luo J, Li GH, Rao MJ et al (2015) Evaluation of sintering behaviors of saprolitic nickeliferous laterite based on quaternary basicity. JOM 67:1966–1974

    Article  Google Scholar 

  36. Whittington BI, Muir D (2000) Pressure acid leaching of nickel laterites: a review. Miner Process Extr M 21:527–600

    Article  Google Scholar 

  37. Rubisov DH, Krowinkel JM, Papangelakis VG (2000) Sulphuric acid pressure leaching of laterites—universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends. Hydrometallurgy 58(1):1–11

    Article  Google Scholar 

  38. Madsen IC, Scarlett NVY, Whittington BI (2005) Pressure acid leaching of nickel laterite ores: an in situ, diffraction study of the mechanism and rate of reaction. J Appl Crystallogr 38(6):927–933

    Article  Google Scholar 

  39. Kaya Ş, Topkaya YA (2011) High pressure acid leaching of a refractory lateritic nickel ore. Miner Eng 24(11):1188–1197

    Article  Google Scholar 

  40. Loveday BK (2008) The use of oxygen in high pressure acid leaching of nickel laterites. Miner Eng 21(7):533–538

    Article  Google Scholar 

  41. Guo XY, Shi WT, Li D et al (2011) Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching. T Nonferr Metal Soc 21(1):191–195

    Article  Google Scholar 

  42. Kyle JH (1996) Pressure acid leaching of Australian nickel-cobalt laterites. In: Grimsey EJ, Neuss I (eds) Nickel ‘96 mineral to market, The Australasian Institute of Mining and Metallurgy, Kalgoorlie, Western Australia, pp 245–249

    Google Scholar 

  43. Pi G, Kong F, Jia L et al (2015) Practice of the HPAL Ramu laterite nickel. China Nonferr Metall 6:11–14 (In Chinese)

    Google Scholar 

  44. Shibayama K, Yokogawa T, Sato H et al (2016) Taganito HPAL plant project. Miner Eng 88:61–65

    Google Scholar 

  45. Önal MAR, Topkaya YA (2014) Pressure acid leaching of Çaldağ lateritic nickel ore: an alternative to heap leaching. Hydrometallurgy 142:98–107

    Article  Google Scholar 

  46. Chalkley ME, Collins MJ, Iglesias C et al (2010) Effect of magnesium on pressure leaching of moa laterite ore. Can Metall Quart 49(3):227–234

    Article  Google Scholar 

  47. Queneau PB, Doane RE, Cooperrider MW et al (1984) Control of autoclave scaling during acid pressure leaching of nickeliferous laterite ore. Metall Mater Trans B 15(3):433–440

    Article  Google Scholar 

  48. McDonald RG, Whittington BI (2008) Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy 91:35–55

    Article  Google Scholar 

  49. Liu K, Chen Q, Hu H (2009) Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore. Hydrometallurgy 98:281–286

    Article  Google Scholar 

  50. Wang XD, Mcdonald RG, Hart RD et al (2013) Acid resistance of goethite in nickel laterite ore from Western Australia. Part I. The relationship between goethite morphologies and acid leaching performance. Hydrometallurgy 140:48–58

    Article  Google Scholar 

  51. Wang XD, Mcdonald RG, Hart RD et al (2014) Acid resistance of goethite in nickel laterite ore from Western Australia. Part II. Effect of liberating cementations on acid leaching performance. Hydrometallurgy 141:49–58

    Article  Google Scholar 

  52. Senanayake G, Das GK (2004) A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy 72:59–72

    Article  Google Scholar 

  53. Luo J, Li GH, Rao MJ et al (2015) Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite. Miner Eng 78:38–44

    Article  Google Scholar 

  54. Das GK, de Lange JAB (2011) Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper (II). Hydrometallurgy 105(3–4):264–269

    Article  Google Scholar 

  55. Li GH, Rao MJ, Jiang T et al (2011) Leaching of limonitic laterite ore by acidic thiosulfate solution. Miner Eng 24(8):859–863

    Article  Google Scholar 

  56. Chander S, Sharma VN (1981) Reduction roasting/ammonia leaching of nickeliferous laterites. Hydrometallurgy 7(4):315–327

    Article  Google Scholar 

  57. Rhamdhani MA, Hayes PC, Jak E (2009) Nickel laterite Part 2—thermodynamic analysis of phase transformations occurring during reduction roasting. Trans Inst Min Metall C 118:146–155

    Google Scholar 

  58. Rhamdhani MA, Jak E, Hayes PC (2008) Basic nickel carbonate: Part I. Microstructure and phase changes during oxidation and reduction processes. Metall Mater Trans 39(2):218–233

    Google Scholar 

  59. Rhamdhani MA, Jak E, Hayes PC (2008) Basic nickel carbonate: Part II. Microstructure evolution during industrial nickel production from basic nickel carbonate. Metall Mater Trans B 39(2):234–245

    Google Scholar 

  60. Graaf JED (1979) The treatment of lateritic nickel ores—a further study of the caron process and other possible improvements. Part I. Effect of reduction conditions. Hydrometallurgy 5(1):47–65

    Google Scholar 

  61. Graaf JED (1980) The treatment of lateritic nickel ores—a further study of the caron process and other possible improvements: Part II. Leaching studies. Hydrometallurgy 5(2–3):255–271

    Article  Google Scholar 

  62. Rhamdhani MA, Hayes PC, Jak E (2009) Nickel laterite Part 1—microstructure and phase characterisations during reduction roasting and leaching. Trans Inst Min Metall C 118:129–145

    Google Scholar 

  63. Rao M, Li G, Zhang X et al (2016) Reductive roasting of nickel laterite ore with sodium sulfate for Fe-Ni production. Part I: reduction/sulfidation characteristics. Sep Sci Technol 51:1408–1420

    Article  Google Scholar 

  64. Purwanto H, Shimada T, Takahashi R et al (2003) Recovery of nickel from selectively reduced laterite ore by sulphuric acid leaching. ISIJ Int 43:181–186

    Article  Google Scholar 

  65. Zevgolis EN, Zografidis C, Perraki T et al (2010) Phase transformations of nickeliferous laterites during preheating and reduction with carbon monoxide. J Therm Anal Calorim 100:133–139

    Article  Google Scholar 

  66. Landers M, Gilkes RJ (2007) Dehydroxylation and dissolution of nickeliferous goethite in new caledonian lateritic Ni ore. Appl Clay Sci 35:162–172

    Article  Google Scholar 

  67. Li J, Li X, Hu Q et al (2009) Effect of pre-roasting on leaching of laterite. Hydrometallurgy 99:84–88

    Article  Google Scholar 

  68. Garces-Granda A, Lapidus GT, Restrepo-Baena OJ (2018) The effect of calcination as pretreatment to enhance the nickel extraction from low-grade laterites. Miner Eng 120:127–131

    Google Scholar 

  69. Dong J, Wei Y, Zhou S et al (2018) The effect of additives on extraction of Ni, Fe and Co from nickel laterite ores. JOM 70:2365–2377

    Article  Google Scholar 

  70. Guo X, Li D, Park KH et al (2009) Leaching behavior of metals from a limonitic nickel laterite using a sulfation–roasting–leaching process. Hydrometallurgy 99:144–150

    Article  Google Scholar 

  71. Li J, Chen Z, Shen B et al (2017) The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate. J Clean Prod 140:1148–1155

    Article  Google Scholar 

  72. Li J, Li Y, Gao Y et al (2016) Chlorination roasting of laterite using salt chloride. Int J Miner Process 148:23–31

    Article  Google Scholar 

  73. Fan C, Zhai X, Fu Y et al (2010) Extraction of nickel and cobalt from reduced limonitic laterite using a selective chlorination–water leaching process. Hydrometallurgy 105:191–194

    Article  Google Scholar 

  74. Fan C, Zhai X, Fu Y et al (2012) Leaching behavior of metals from chlorinated limonitic nickel laterite. Int J Miner Process 110–111:117–120

    Article  Google Scholar 

  75. Li GH, Zhou Q, Zhu ZP et al (2018) Selective leaching of nickel and cobalt from limonitic laterite using phosphoric acid: An alternative for value-added processing of laterite. J Clean Prod 189:620–626

    Article  Google Scholar 

  76. Luo J, Rao MJ, Li GH et al (2021) Self-driven and efficient leaching of limonitic laterite with phosphoric acid. Miner Eng 169:106979

    Article  Google Scholar 

  77. Sukla LB, Panchanadikar V (1993) Bioleaching of lateritic nickel ore using a heterotrophic micro-organism. Hydrometallurgy 32(3):373–379

    Article  Google Scholar 

  78. Valix M, Tang JY, Cheung WH (2001) The effects of mineralogy on the biological leaching of nickel laterite ores. Miner Eng 14(12):1629–1635

    Article  Google Scholar 

  79. Tang JA, Valix M (2006) Leaching of low grade limonite and nontronite ores by fungi metabolic acids. Miner Eng 19(12):1274–1279

    Article  Google Scholar 

  80. Diaz CM, Landolt CA, Vahed A et al (1988) A review of nickel pyrometallurgical operations. JOM 40(9):28–33

    Article  Google Scholar 

  81. Warner AEM, Díaz CM, Dalvi AD et al (2006) JOM world nonferrous smelter survey, part III: Nickel: Laterite. JOM 58(4):11–20

    Article  Google Scholar 

  82. Moskalyk RR, Alfantazi AM (2002) Nickel sulphide smelting and electrorefining practice: a review. Miner Proc Ext Met Rev 23(3–4):141–180

    Article  Google Scholar 

  83. Ishii K (1987) Development of ferro-nickel smelting from laterite in Japan. Int J Miner Process 19(1–4):15–24

    Article  Google Scholar 

  84. Watanabe T, Ono S, Arai H et al (1987) Direct reduction of garnierite ore for production of ferro-nickel with a rotary kiln at Nippon Yakin Kogyo Co. Ltd., Oheyama Works. Int J Miner Process 19(1–4):173–187

    Google Scholar 

  85. Tsuji H (2012) Influence of non-stoichiometric serpentine in saprolite Ni-ore on a softening behavior of raw materials in a rotary kiln for production of ferro-nickel alloy. ISIJ Int 52(3):333–341

    Article  Google Scholar 

  86. Tsuji H (2012) Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in a rotary kiln for production of ferro-nickel alloy. ISIJ Int 52(6):1000–1009

    Article  Google Scholar 

  87. Kobayashi Y, Todoroki H, Tsuji H (2011) Melting behavior of siliceous nickel ore in a rotary kiln to produce ferronickel alloys. ISIJ Int 51(1):35–40

    Article  Google Scholar 

  88. Matsumori T (1999) Constituent minerals of siliceous Ni ores-fundamental study on Fe-Ni smelting (1st report). J Min Mater Process Inst Japan 115(6):448–454

    Google Scholar 

  89. Yamasaki S, Noda M, Tachino N (2007) Production of ferro-nickel and environmental measures at YAKIN Oheyama Co. Ltd. J Min Mater Process Inst Japan 123(12):689–692

    Google Scholar 

  90. Walker C, Kashani-Nejad S, Dalvi A et al (2009) Future of rotary kiln-electric furnace (RKEF) processing of nickel laterites. In: Proceedings of the European metallurgical conference, EMC, 2009

    Google Scholar 

  91. Crundwell FK, Moats MS, Ramachandran V et al (2011) Extractive metallurgy of nickel cobalt & platinum group metals. In: Crundwell FK (ed) Overview of the smelting of nickel laterite to ferronickel. Elsevier Ltd., Kidlington, pp 49–53

    Google Scholar 

  92. Crundwell FK, Moats MS, Ramachandran V et al (2011) Extractive metallurgy of nickel cobalt & platinum group metals. In: Crundwell FK (ed) Smelting of laterite ores to ferronickel. Elsevier Ltd., Kidlington, pp 67–83

    Google Scholar 

  93. Gasik M (2013) Handbook of ferroalloys: theory and technology. In: Polyakov O (ed) Technology of ferronickel. Elsevier Ltd., Waltham, pp 367–375

    Google Scholar 

  94. International Stainless Steel Forum (ISSF) (2020) The stainless steel consumption forecast. http://www.worldstainless.org/statistics/SCF%20Stainless%20Steel%20Consumption%20Forecast. Accessed 3 June 2020

  95. Tsuji H, Tachino N (2012) Ring formation in the smelting of saprolite Ni-ore in a rotary kiln for production of ferro-nickel alloy: mechanism. ISIJ Int 52(10):1724–1729

    Article  Google Scholar 

  96. Tsuji H, Tachino N (2012) Ring Formation in the smelting of saprolite Ni-ore in a rotary kiln for production of ferro-nickel alloy: examination of the mechanism. ISIJ Int 52(11):1951–1957

    Article  Google Scholar 

  97. Tsang BK, Zhang Y (2012) Energy challenges for a nickel laterite mining and smelting facility. In: IFAC workshop on automation in the mining, mineral and metal industries, Gifu, Japan, pp 7–12

    Google Scholar 

  98. Liu P, Li B, Cheung SCP et al (2016) Material and energy flows in rotary kiln-electric furnace smelting of ferronickel alloy with energy saving. Appl Therm Eng 109:542–559

    Article  Google Scholar 

  99. Rong W, Li B, Liu P (2017) Exergy assessment of a rotary kiln-electric furnace smelting of ferronickel alloy. Energy 138:942–953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Metallurgical Industry Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, G., Luo, J., Rao, M., Peng, Z., Jiang, T. (2023). An Overview of Nickel Utilization from Laterite Ore. In: Advances and Innovations in Ferronickel-Making. Springer, Singapore. https://doi.org/10.1007/978-981-19-5227-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5227-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5226-5

  • Online ISBN: 978-981-19-5227-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics