Skip to main content

Joint Degree Distribution of Growing Multiplex Network Model with Nonlinear Preferential Attachment Rule

  • Conference paper
  • First Online:
Theoretical Computer Science (NCTCS 2022)

Abstract

Many complex systems in real life are made up of several subsystems that evolve through time. Multiplex growth network models, in which edges reflect different types between the same vertex set, can be used to represent such systems. Here we put forward a new multiplex growth network model based on nonlinear preferential attachment rule. Firstly, we derive the general joint degree distribution expression of the model via the rate equation approach at the steady-state. Secondly, by using the Z-transform theory, we obtain the joint degree distribution of the model corresponding to the weight function \(f(k)=k\) and \(f(k)=c>0\). Finally, we apply Monte Carlo simulation to check the correctness of the theoretical analysis, the research shows that the theoretical results are corroborated with Monte Carlo simulations.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy, J.: Artificial intelligence, rationality, and the world wide web. IEEE Intell. Syst. 33(1), 98–103 (2018)

    Article  Google Scholar 

  2. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25), 258701 (2001)

    Google Scholar 

  3. Boltz, T.A., Devkota, P., Wuchty, S.: Collective influencers in protein interaction networks. Sci. Rep. 9, 3948 (2019)

    Article  Google Scholar 

  4. Tabassum, S., Pereira, F.S.F., Fernandes, S., et al.: Social network analysis: an overview. WIREs Data Min. Knowl. Discov. 8, e1256 (2018)

    Google Scholar 

  5. Lu, C., Zhang, Y., Ahn, Y.Y., Ding, Y., et al.: Co-contributorship network and division of labor in individual scientific collaborations. J. Assoc. Inf. Sci. Technol. 71(10), 1–17 (2020)

    Article  Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective dynamics of small world networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  7. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianconi, G., Barabasi, A.L.: Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86(24), 5632–5635 (2001)

    Article  Google Scholar 

  9. Li, X., Chen, G.R.: A local-world evolving network model. Phys. A 328(1–2), 274–286 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zadorozhnyi, V.N., Yudin, E.B.: Growing network: models following nonlinear preferential attachment rule. Phys. A 428, 111–132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiong, K., Zeng, C., Liu, Z.: Effect of degree correlation on the thermal transport in complex networks. Nonlinear Dyn. 94, 3067–3075 (2018). https://doi.org/10.1007/s11071-018-4545-y

    Article  Google Scholar 

  12. Lewis, K., Kaufman, J., Gonzalez, M., et al.: Tastes, ties, and time: a new social network dataset using Facebook.com. Soc. Netw. 30(4), 330–342 (2008)

    Google Scholar 

  13. Szell, M., Lambiotte, R., Thurner, R.: Multirelational organization of large-scale social networks in an online world. PNAS 107(31), 13636–13641 (2010)

    Article  Google Scholar 

  14. Barigozzi, M., Fagiolo, G., Garlaschelli, D.: Multinetwork of international trade: a commodity-specific analysis. Phys. Rev. E 81(1), 046104 (2010)

    Article  Google Scholar 

  15. Halu, A., Mukherjee, S., Bianconi, G.: Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. Phys. Rev. E 89(1), 012806 (2014)

    Article  Google Scholar 

  16. Kim, J.Y., Goh, K.I.: Coevolution and correlated multiplexity in multiplex networks. Phys. Rev. Lett. 111(5), 058702 (2013)

    Article  Google Scholar 

  17. Nicosia, V., Bianconi, G., Latora, V., et al.: Growing multiplex networks. Phys. Rev. Lett. 111(5), 058701 (2013)

    Article  Google Scholar 

  18. Nicosia, V., Bianconi, G., Latora, V., et al.: Nonlinear growth and condensation in multiplex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 90(4), 042807 (2013)

    Google Scholar 

  19. Fotouhi, B., Momeni, N.: Inter-layer degree correlations in heterogeneously growing multiplex networks. In: Mangioni, G., Simini, F., Uzzo, S.M., Wang, D. (eds.) Complex Networks VI. SCI, vol. 597, pp. 159–170. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16112-9_16

    Chapter  MATH  Google Scholar 

  20. Momeni, N., Fotouhi, B.: Growing multiplex networks with arbitrary number of layers. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92(6), 062812 (2015)

    Google Scholar 

  21. Lu, Y., Xu, D., Zhou, J.: Degree correlations in two layer growth model with nonlinear preferential attachment rule. In: Du, D., Li, L., Zhu, E., He, K. (eds.) NCTCS 2017. CCIS, vol. 768, pp. 167–181. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6893-5_13

    Chapter  Google Scholar 

  22. Solá, L., Romance, M., Criado, R., et al.: Eigenvector centrality of nodes in multiplex networks. Chaos 23, 033131 (2013)

    Article  MATH  Google Scholar 

  23. Tudisco, F., Arrigo, F., Gautier, A.: Node and layer eigenvector centralities for multiplex networks. SIAM J. Appl. Math. 78(2), 853–876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cangfeng, D., Kan, L.: Centrality ranking in multiplex networks using topologically biased random walks. Neurocomputing 312, 263–275 (2018)

    Article  Google Scholar 

  25. Tortosa, L., Vicent, J.F., Yeghikyan, G.: An algorithm for ranking the nodes of multiplex networks with data based on the PageRank concept. Appl. Math. Comput. 392, 125676 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Baxter, G.J., Cellai, D., Dorogovtsev, S.N., et al.: Cycles and clustering in multiplex networks. Phys. Rev. E 94(6), 062308 (2016)

    Article  Google Scholar 

  27. Boccaletti, S., Bianconi, G., Criado, R., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mucha, P.J., Richardson, T., Macon, K., et al.: Community structure in time-dependent, multiscale, and multiplex networks. Science 32(5980), 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Newman, M.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  30. Didier, G., Brun, C., Baudot, A.: Identifying communities from multiplex biological networks. PeerJ 3, e1525 (2015)

    Article  Google Scholar 

  31. Ma, X., Dong, D., Wang, Q.: Community detection in multi-layer networks using joint nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. 31(2), 273–286 (2018)

    Article  Google Scholar 

  32. Gomez, S., Diaz-Guilera, A., Gomez-Gardenes, J., et al.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110(2), 028701 (2013)

    Article  Google Scholar 

  33. Guo, Q., Lei, Y., Jiang, X., et al.: Epidemic spreading with activity-driven awareness diffusion on multiplex network. Chaos 26(4), 043110 (2016)

    Article  MathSciNet  Google Scholar 

  34. Tejedor, A., Longjas, A., Foufoula-Georgiou, E., et al.: Diffusion dynamics and optimal coupling in multiplex networks with directed layers. Phys. Rev. X 8, 031071 (2018)

    Google Scholar 

  35. Gao, S., Chang, L., Wang, X., et al.: Cross-diffusion on multiplex networks. New J. Phys. 22, 053047 (2020)

    Article  MathSciNet  Google Scholar 

  36. Jaquez, R.B., Ramos, L.A.A., Schaum, A.: Spreading control in two-layer multiplex networks. Entropy 22(10), 1157 (2020)

    Article  MathSciNet  Google Scholar 

  37. Yu, X., Yang, Q., Ai, K., et al.: Information spreading on two-layered multiplex networks with limited contact. IEEE Access 8, 104316–104325 (2020)

    Article  Google Scholar 

  38. Gómez-Gardenes, J., Reiñares, I., Arenas, A., et al.: Evolution of cooperation in multiplex networks. Sci. Rep. 2, 620 (2012)

    Article  Google Scholar 

  39. Pereda, M.: Evolution of cooperation under social pressure in multiplex networks. Phys. Rev. E 94(3), 032314 (2016)

    Article  Google Scholar 

  40. Yu, J., Liu, Z., Han, X.: Cooperation evolution in multiplex networks with the heterogeneous diffusion model. IEEE Access 9, 86074–86082 (2021)

    Article  Google Scholar 

  41. Leyva, I., Sendiña-Nadal, I., Sevilla-Escoboza, R., Vera-Avila, V.P., et al.: Relay synchronization in multiplex networks. Sci. Rep. 8, 8629 (2017)

    Article  Google Scholar 

  42. Jalan, S., Rathore, V., Kachhvah, A.D., et al.: Inhibition-induced explosive synchronization in multiplex networks. Phys. Rev. E 99(6), 062305 (2019)

    Article  Google Scholar 

  43. Guo, Q., Cozzo, E., Zheng, Z., et al.: Levy random walks on multiplex networks. Sci. Rep. 6, 37641 (2016)

    Article  Google Scholar 

  44. Lu, Y.J., Xu, D.Y., Zhou, J.C.: Vertex degree distribution in growth models with nonlinear preferential attachment rule. J. Beijing Univ. Posts Telecommun. 39(5), 116–123 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62162012), the National Science and Technology Project of Guizhou Province (Grant Nos. [2019]1159, [2020]1Y277, [2021]016, [2020]1Y263), the Natural Science Research Project of the Guizhou Provincial Department of Education(Grant No. QJHKY[2018]087, QJJ[2022]015), and the Guizhou Minzu University Fund Project (Grant Nos. [2019]YB01, [2019]YB02, [2019]YB03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y. et al. (2022). Joint Degree Distribution of Growing Multiplex Network Model with Nonlinear Preferential Attachment Rule. In: Cai, Z., Chen, Y., Zhang, J. (eds) Theoretical Computer Science. NCTCS 2022. Communications in Computer and Information Science, vol 1693. Springer, Singapore. https://doi.org/10.1007/978-981-19-8152-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-8152-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-8151-7

  • Online ISBN: 978-981-19-8152-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics