Skip to main content

Excitonic Processes in Organic Semiconductors and Their Applications in Organic Photovoltaic and Light Emitting Devices

  • Chapter
  • First Online:
Excitonic and Photonic Processes in Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 203))

Abstract

This chapter discusses the excitonic processes in organic semiconductors and their applications in photovoltaic and light emitting devices fabricated from these materials. The mechanisms of excitonic absorption, diffusion and dissociation of excitons at the donor-acceptor interface are presented in bulk-heterojunction organic solar cells. After the formation of Frenkel excitons upon photon absorption, excitons must diffuse to the interface to dissociate into free charge carriers which are then collected at their respective electrodes. The interface must be in close proximity, of the order of the diffusion length, and for efficient dissociation the offset of the lowest unoccupied molecular orbital energy between the donor and acceptor must be at least equal to the exciton binding energy. The Förster and Dexter energy transfer mechanisms are used to calculate the exciton diffusion coefficients and exciton diffusion lengths for singlet and triplet excitons, respectively. The newly derived interaction operator between charge transfer exciton and molecular vibration energy is used to understand the mechanism and derive the rate of dissociation of excitons into free charge carriers. The exciton diffusion and dissociation in bulk-heterojunction organic solar cell are presented first followed by the radiative recombination of exciton in organic light emitting devices (OLEDs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.E. Lyons, F. Gutman, Organic Semiconductors (Wiley, Sydney, 1967)

    Google Scholar 

  2. A.S. Davydov, Theory of Molecular Excitons (McGraw-Hill, New York, 1962)

    Google Scholar 

  3. D.P. Craig, S.H. Walmsley, Excitons in Molecular Crystals (Benjamin, New York, 1968)

    Google Scholar 

  4. J. Singh, Excitation Energy Transfer Processes in Condensed Matter (Plenum, New York, 1994)

    Book  Google Scholar 

  5. N. Yeh, P. Yeh, Renew. Sustain. Energy Rev. 21, 421 (2013)

    Article  Google Scholar 

  6. M.T. Dang, L. Hirsch, G. Wantz, Adv. Mat. 23, 3597 (2011)

    Article  Google Scholar 

  7. A. Kitai (ed.), Principles of Solar Cells, LEDs and Diodes: The Role of the PN Junction (Wiley, Dewey, 2011)

    Google Scholar 

  8. C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)

    Article  ADS  Google Scholar 

  9. W.C.H. Choy, Organic Solar Cells: Materials and Device Physics (Springer, Dewey, 2012)

    Google Scholar 

  10. I. Bruder, Thesis, Max-Planck-Institut für Festkörperforschung (2010)

    Google Scholar 

  11. M.R. Narayan, J. Singh, Eur. Phys. J. B 86, 1 (2013)

    Article  MathSciNet  Google Scholar 

  12. M.R. Narayan, J. Singh, J. Appl. Phys. 114, 154515 (2013)

    Article  ADS  Google Scholar 

  13. M.R. Narayan, J. Singh, Phys. Status Solidi C 9, 2386 (2012)

    Article  ADS  Google Scholar 

  14. K. Tvingstedt, K. Vandewal, F. Zhang, O. Inganäs, J. Phys. Chem. C 114, 21824 (2010)

    Google Scholar 

  15. C.-W. Chu, V. Shrotriya, G. Li, Y. Yang, Appl. Phys. Lett. 88, 153504 (2006)

    Article  ADS  Google Scholar 

  16. W. Cai, X. Gong, Y. Cao, Sol. Energy Mat. Sol. Cells 94, 114 (2010)

    Article  Google Scholar 

  17. G. Zhao, Y. He, Y. Li, Adv. Mat. 22, 4355 (2010)

    Article  Google Scholar 

  18. Y. Liang, D. Feng, Y. Wu, S.T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc 131, 7792 (2009)

    Article  Google Scholar 

  19. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 6, 593 (2012)

    Article  ADS  Google Scholar 

  20. J. Roncali, Acc. Chem. Res. 42, 1719 (2009)

    Article  Google Scholar 

  21. B. Kippelen, J.L. Brédas, Energy Environ. Sci. 2, 251 (2009)

    Article  Google Scholar 

  22. J.L. Brédas, J.E. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009)

    Article  Google Scholar 

  23. Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mat. 22, E135 (2010)

    Article  Google Scholar 

  24. H. Ohkita, S. Ito, Polymer 52, 4397 (2011)

    Article  Google Scholar 

  25. M.C. Scharber, D. MĂĽhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mat. 18, 789 (2006)

    Article  Google Scholar 

  26. M. Muntwiler, Q. Yang, W.A. Tisdale, X.-Y. Zhu, Phys. Rev. Lett. 101, 196403 (2008)

    Article  ADS  Google Scholar 

  27. J. Singh, I.K. Oh, J. Appl. Phys. 97, 063516 (2005)

    Article  ADS  Google Scholar 

  28. J. Singh, Phys. Status solidi A 208, 1809 (2011). doi:10.1002/pssa.201084110

    Google Scholar 

  29. J. Singh, Phys. Rev. B 76, 085205 (2007)

    Article  ADS  Google Scholar 

  30. A. Shafiee, M.M. Salleh, M. Yahaya, Sains Malays. 40, 173 (2011)

    Google Scholar 

  31. J. Singh, H. Baessler, S. Kugler, J. Chem. Phys. 129, 41103 (2008)

    Article  Google Scholar 

  32. C.M. Yang, C.-H. Wu, H.-H. Liao, K.-Y. Lai, H.-P. Cheng, S.-F. Horng, H.-F. Meng, J.-T. Shy, Appl. Phys. Lett. 90, 133509 (2007)

    Article  ADS  Google Scholar 

  33. G.L. Schulz, S. Holdcroft, Chem. Mater. 20, 5351 (2008)

    Article  Google Scholar 

  34. P.G. Da Costa, E. Conwell, Phys. Rev. B 48, 1349 (1993)

    Google Scholar 

  35. Y.F. Li, Y. Cao, J. Gao, D.L. Wang, G. Yu, A.J. Heeger, Synth. Met. 99, 243 (1999)

    Google Scholar 

  36. V.A. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nat. Mater. 8, 707 (2009)

    Article  ADS  Google Scholar 

  37. F.S. Steinbacher, R. Krause, A. Hunze, A. Winnacker, Phys. Status Solidi A 209, 340 (2012)

    Article  ADS  Google Scholar 

  38. W.M. Yen, P.M. Selzer, Laser Spectroscopy of Solids: Topics in Applied Physics, vol. 49 (Springer, New York, 1986)

    Google Scholar 

  39. C.E. Swenberg, M. Pope, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, Oxford 1999)

    Google Scholar 

  40. R.R. Lunt, N.C. Giebink, A.A. Belak, J.B. Benziger, S.R. Forrest, J. Appl. Phys. 105, 053711 (2009)

    Article  ADS  Google Scholar 

  41. J.-W. Yu, J.K. Kim, D.Y. Kim, C. Kim, N.W. Song, D. Kim, Curr. Appl. Phys 6, 59 (2006)

    Article  ADS  Google Scholar 

  42. X.-Y. Zhu, Q. Yang, M. Muntwiler, Acc. Chem. Res. 42, 1779 (2009)

    Article  Google Scholar 

  43. M.J. Kendrick, A. Neunzert, M.M. Payne, B. Purushothaman, B.D. Rose, J.E. Anthony, M.M. Haley, O. Ostroverkhova, J. Phys. Chem. C 116, 18108 (2012)

    Article  Google Scholar 

  44. M.R. Narayan, J. Singh, J. Appl. Phys. 114, 073510 (2013)

    Article  ADS  Google Scholar 

  45. M.R. Narayan, J. Singh, Can. J. Phys. (2013 in press)

    Google Scholar 

  46. R. Mauer, Thesis, Johannes Gutenberg-University Mainz (2012)

    Google Scholar 

  47. L. Koster, E. Smits, V. Mihailetchi, P. Blom, Phys. Rev. B 72, 085205 (2005)

    Article  ADS  Google Scholar 

  48. L. Koster, V. Mihailetchi, P. Blom, Appl. Phys. Lett. 88, 093511 (2006)

    Article  ADS  Google Scholar 

  49. M. Lenes, G.J.A. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C. Hummelen, P.W. Blom, Adv. Mat. 20, 2116 (2008)

    Article  Google Scholar 

  50. J.D. Servaites, M.A. Ratner, T.J. Marks, App. Phys. Lett. 95, 163302 (2009)

    Article  ADS  Google Scholar 

  51. J. Singh, Phys. Status Solidi C 7, 984 (2010)

    Google Scholar 

  52. J. Singh, Phys. Rev. B 76, 085205 (2007)

    Article  ADS  Google Scholar 

  53. J.S. Kim, J.H. Park, J.H. Lee, J. Jo, D.-Y. Kim, K. Cho, Appl. Phys. Lett. 91, 112111 (2007)

    Article  ADS  Google Scholar 

  54. S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. Columbus 107, 1324 (2007)

    Google Scholar 

  55. A.J. Moulé, J.B. Bonekamp, K. Meerholz, J. Appl. Phys. 100, 094503 (2006)

    Article  ADS  Google Scholar 

  56. R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, M. Lögdlund, Nature 397, 121 (1999)

    Article  ADS  Google Scholar 

  57. J. Singh, Harvesting emission in white organic light emitting devices in organic light emitting devices, Ch. 1, ed. by J. Singh (INTECH, Rijeka, 2012), pp. 1–20

    Google Scholar 

  58. Y. Cao, I.D. Parker, G. Yu, C. Zhang, A.J. Heeger, Nature 394, 414 (1999)

    ADS  Google Scholar 

  59. Z. Shuai, D. Beljonne, R.J. Silbey, J.L. Bredas, Phys. Rev. Lett. 84, 131 (2000)

    Article  ADS  Google Scholar 

  60. C. Adachi, M.A. Baldo, M.E. Thompson, S.E Forrest, J. Appl. Phys. 90, 5048 (2001)

    Google Scholar 

  61. G. Schwartz, S. Reineke, T.C. Rosenow, K. Walzer, K. Leo, Adv. Funct. Mat. 19, 1319 (2009)

    Article  Google Scholar 

  62. J. Singh, Phys. Status Solidi C 8, 189 (2011)

    Google Scholar 

  63. J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett. 64, 815 (1994)

    Google Scholar 

  64. Y. Sun, N.C. Giebink, H. Kannao, B. Ma, M.E. Thompson, S.R. Forest, Nature 440, 908 (2006)

    Article  ADS  Google Scholar 

  65. J. Singh, Optical Properties of Condensed Matter and Applications, Ch. 6. ed. by J. Singh. Photoluminescence and photoinduced changes in noncrystalline condensed matter (Wiley, Chichester, 2006)

    Google Scholar 

  66. J. Singh, K. Shimakawa, Advances in Amorphous Semiconductors (Taylor & Francis, London, 2003)

    Book  Google Scholar 

  67. F. Laquai, C. Im, A. Kadashchuk, H. Baessler, Chem. Phys. Lett. 375, 286 (2003)

    Article  ADS  Google Scholar 

  68. M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Nature 395, 151 (1998)

    Article  ADS  Google Scholar 

  69. S.-J. Su, E. Gonmori, H. Sasabe, J. Kido, Adv. Mater. 20, 4189 (2008)

    Google Scholar 

  70. N.R. Evans, L.S. Devi, C.S.K. Mak, S.E. Watkins, S.I. Pascu, A. Köhler, R.H. Friend, C.K. Williams, A.B. Holmes, J. Am. Chem. Soc. 128, 6647 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Narayan, M.R., Singh, J. (2015). Excitonic Processes in Organic Semiconductors and Their Applications in Organic Photovoltaic and Light Emitting Devices. In: Singh, J., Williams, R. (eds) Excitonic and Photonic Processes in Materials. Springer Series in Materials Science, vol 203. Springer, Singapore. https://doi.org/10.1007/978-981-287-131-2_8

Download citation

Publish with us

Policies and ethics