Skip to main content

Peptidic Hydrogels

  • Chapter
  • First Online:
In-Situ Gelling Polymers

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 1656 Accesses

Abstract

This chapter looks into the hierarchical structures of peptide sequences and hydrogels constructed with physical solution assembly in an attempt to discuss the fundamental properties of peptide hydrogels and the molecular foundations. Peptide hydrogels are great candidates in the ever-growing field of biological and medical applications due to their ease of synthesis and customizable molecular and material features. The natural cytocompatibility and degradability of peptides make peptide hydrogels great candidates for cell encapsulation and drug delivery. There is immense potential in using new peptide molecules to make new hydrogel materials with both designed properties as well as unanticipated, excellent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bromley, E.H.C., Channon, K.J., King, P.J.S., et al.: Assembly pathway of a designed alpha-helical protein fiber. Biophys. J. 98, 1668–1676 (2010). doi:10.1016/j.bpj.2009.12.4309

    CAS  Google Scholar 

  2. Ruoslahti, E.: RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996). doi:10.1146/annurev.cellbio.12.1.697

    CAS  Google Scholar 

  3. Nilsson, B.L., Soellner, M.B., Raines, R.T.: Chemical synthesis of proteins. Annu. Rev. Biophys. Biomol. Struct. 34, 91 (2005)

    CAS  Google Scholar 

  4. Hersel, U., Dahmen, C., Kessler, H.: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003)

    CAS  Google Scholar 

  5. Iha, R.K., Wooley, K.L., Nyström, A.M., et al.: Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem. Rev. 109, 5620–5686 (2009)

    CAS  Google Scholar 

  6. Collier, J.H., Segura, T.: Evolving the use of peptides as components of biomaterials. Biomaterials 32, 4198–4204 (2011). doi:10.1016/j.biomaterials.2011.02.030

    CAS  Google Scholar 

  7. DeForest, C.A., Sims, E.A., Anseth, K.S.: Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem. Mater. 22, 4783–4790 (2010). doi:10.1021/cm101391y

    CAS  Google Scholar 

  8. Ruoslahti, E.: Integrins. J. Clin. Invest. 87, 1–5 (1991). doi:10.1172/JCI114957

    CAS  Google Scholar 

  9. DeForest, C.A., Polizzotti, B.D., Anseth, K.S.: Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater. 8, 659–664 (2009). doi:10.1038/nmat2473

    CAS  Google Scholar 

  10. Ulijn, R.V., Smith, A.M.: Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008)

    CAS  Google Scholar 

  11. Kyle, S., Aggeli, A., Ingham, E., McPherson, M.J.: Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol. 27, 423–433 (2009). doi:10.1016/j.tibtech.2009.04.002

    CAS  Google Scholar 

  12. Woolfson, D.N., Mahmoud, Z.N.: More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. Chem. Soc. Rev. 39, 3464–3479 (2010). doi:10.1039/c0cs00032a

    CAS  Google Scholar 

  13. Smith, A.M., Banwell, E.F., Edwards, W.R., et al.: Engineering increased stability into self-assembled protein fibers. Adv. Funct. Mater. 16, 1022–1030 (2006). doi:10.1002/adfm.200500568

    CAS  Google Scholar 

  14. Schneider, J., Pochan, D., Ozbas, B., et al.: Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030–15037 (2002). doi:10.1021/ja027993g

    CAS  Google Scholar 

  15. Bowerman, C.J., Nilsson, B.L.: A reductive trigger for peptide self-assembly and hydrogelation. J. Am. Chem. Soc. 132, 9526–9527 (2010). doi:10.1021/ja1025535

    CAS  Google Scholar 

  16. Kopecek, J., Yang, J.: Smart self-assembled hybrid hydrogel biomaterials. Angew. Chem. Int. Ed. 51, 7396–7417 (2012). doi:10.1002/anie.201201040

    CAS  Google Scholar 

  17. Ryan, D.M., Nilsson, B.L.: Self-assembled amino acids and dipeptides as noncovalent hydrogels for tissue engineering. Polym. Chem. 3, 18–33 (2011). doi:10.1039/c1py00335f

    Google Scholar 

  18. Nicolai, T., Durand, D.: Controlled food protein aggregation for new functionality. Curr. Opin. Colloid Interface Sci. 18, 249–256 (2013). doi:10.1016/j.cocis.2013.03.001

    CAS  Google Scholar 

  19. Kopecek, J., Yang, J.: Peptide-directed self-assembly of hydrogels. Acta Biomater. 5, 805–816 (2009). doi:10.1016/j.actbio.2008.10.001

    CAS  Google Scholar 

  20. Zhang, Y., Gu, H., Yang, Z., Xu, B.: Supramolecular hydrogels respond to ligand–receptor interaction. J. Am. Chem. Soc. 125, 13680–13681 (2003). doi:10.1021/ja036817k

    CAS  Google Scholar 

  21. Shu, J.Y., Panganiban, B., Xu, T.: Peptide–polymer conjugates: from fundamental science to application. Annu. Rev. Phys. Chem. 64, 631–657 (2013)

    CAS  Google Scholar 

  22. Bowerman, C.J., Liyanage, W., Federation, A.J., Nilsson, B.L.: Tuning beta-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity. Biomacromolecules 12, 2735–2745 (2011). doi:10.1021/bm200510k

    CAS  Google Scholar 

  23. Li, J., Gao, Y., Kuang, Y., et al.: Dephosphorylation of d-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy. J. Am. Chem. Soc. 135, 9907–9914 (2013). doi:10.1021/ja404215g

    CAS  Google Scholar 

  24. Kim, M., Tang, S., Olsen, B.D.: Physics of engineered protein hydrogels. J. Polym. Sci. B Polym. Phys. 51, 587–601 (2013). doi:10.1002/polb.23270

    Google Scholar 

  25. Khakshoor, O., Nowick, J.S.: Artificial beta-sheets: chemical models of beta-sheets. Curr. Opin. Chem. Biol. 12, 722–729 (2008). doi:10.1016/j.cbpa.2008.08.009

    CAS  Google Scholar 

  26. Das, A.K., Collins, R., Ulijn, R.V.: Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 4, 279–287 (2008)

    CAS  Google Scholar 

  27. Ozbas, B., Rajagopal, K., Schneider, J., Pochan, D.: Semiflexible chain networks formed via self-assembly of β-hairpin molecules. Phys. Rev. Lett. 93, 268106 (2004). doi:10.1103/PhysRevLett.93.268106

    Google Scholar 

  28. Ozbas, B., Kretsinger, J., Rajagopal, K., et al.: Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37, 7331–7337 (2004)

    CAS  Google Scholar 

  29. Bakota, E.L., Aulisa, L., Galler, K.M., Hartgerink, J.D.: Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules 12, 82–87 (2011). doi:10.1021/bm1010195

    CAS  Google Scholar 

  30. Olsen, B.D.: Engineering materials from proteins. AIChE J. 59, 3558–3568 (2013). doi:10.1002/aic.14223

    CAS  Google Scholar 

  31. Jung, J.P., Nagaraj, A.K., Fox, E.K., et al.: Co-assembling peptides as defined matrices for endothelial cells. Biomaterials 30, 2400–2410 (2009)

    CAS  Google Scholar 

  32. DiMarco, R.L., Heilshorn, S.C.: Multifunctional materials through modular protein engineering. Adv. Mater. 24, 3923–3940 (2012). doi:10.1002/adma.201200051

    CAS  Google Scholar 

  33. Estroff, L.A., Hamilton, A.D.: Water gelation by small organic molecules. Chem. Rev. 104, 1201–1218 (2004)

    CAS  Google Scholar 

  34. Bromley, E.H.C., Channon, K., Moutevelis, E., Woolfson, D.N.: Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem. Biol. 3, 38–50 (2008). doi:10.1021/cb700249v

    CAS  Google Scholar 

  35. Kyle, S., Aggeli, A., Ingham, E., McPherson, M.J.: Recombinant self-assembling peptides as biomaterials for tissue engineering. Biomaterials 31, 9395–9405 (2010). doi:10.1016/j.biomaterials.2010.08.051

    CAS  Google Scholar 

  36. Woolfson, D.N.: Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides. Pept. Sci. 94, 118–127 (2010). doi:10.1002/bip.21345

    CAS  Google Scholar 

  37. Guvendiren, M., Lu, H.D., Burdick, J.A.: Shear-thinning hydrogels for biomedical applications. Soft Matter 8, 260–272 (2011). doi:10.1039/c1sm06513k

    Google Scholar 

  38. Yan, C., Pochan, D.J.: Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem. Soc. Rev. 39, 3528–3540 (2010)

    CAS  Google Scholar 

  39. Smith, T.J., Khatcheressian, J., Lyman, G.H., et al.: 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J. Clin. Oncol. 24, 3187–3205 (2006)

    CAS  Google Scholar 

  40. Jayawarna, V., Richardson, S.M., Hirst, A.R., et al.: Introducing chemical functionality in Fmoc-peptide gels for cell culture. Acta Biomater. 5, 934–943 (2009). doi:10.1016/j.actbio.2009.01.006

    CAS  Google Scholar 

  41. Olsen, B.D., Kornfield, J.A., Tirrell, D.A.: Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43, 9094–9099 (2010). doi:10.1021/ma101434a

    CAS  Google Scholar 

  42. Adams, D.J., Butler, M.F., Frith, W.J., et al.: A new method for maintaining homogeneity during liquid–hydrogel transitions using low molecular weight hydrogelators. Soft Matter 5, 1856 (2009). doi:10.1039/b901556f

    CAS  Google Scholar 

  43. Bakota, E.L., Wang, Y., Danesh, F.R., Hartgerink, J.D.: Injectable multidomain peptide nanofiber hydrogel as a delivery agent for stem cell secretome. Biomacromolecules 12, 1651–1657 (2011)

    CAS  Google Scholar 

  44. Saiani, A., Mohammed, A., Frielinghaus, H., et al.: Self-assembly and gelation properties of alpha-helix versus beta-sheet forming peptides. Soft Matter 5, 193–202 (2009). doi:10.1039/b811288f

    CAS  Google Scholar 

  45. Macaya, D., Spector, M.: Injectable hydrogel materials for spinal cord regeneration: a review. Biomed. Mater. 7, 012001 (2012). doi:10.1088/1748-6041/7/1/012001

    CAS  Google Scholar 

  46. Doose, S., Neuweiler, H., Barsch, H., Sauer, M.: Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. Proc. Natl. Acad. Sci. 104, 17400–17405 (2007). doi:10.1073/pnas.0705605104

    CAS  Google Scholar 

  47. Yang, Z., Gu, H., Fu, D., et al.: Enzymatic formation of supramolecular hydrogels. Adv. Mater. 16, 1440–1444 (2004). doi:10.1002/adma.200400340

    CAS  Google Scholar 

  48. Raeburn, J., Zamith Cardoso, A., Adams, D.J.: The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem. Soc. Rev. 42, 5143–5156 (2013). doi:10.1039/c3cs60030k

    CAS  Google Scholar 

  49. Yucel, T., Micklitsch, C.M., Schneider, J.P., Pochan, D.J.: Direct observation of early-time hydrogelation in beta-hairpin peptide self-assembly. Macromolecules 41, 5763–5772 (2008). doi:10.1021/ma702840q

    CAS  Google Scholar 

  50. Aulisa, L., Dong, H., Hartgerink, J.D.: Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10, 2694–2698 (2009). doi:10.1021/bm900634x

    CAS  Google Scholar 

  51. Branco, M.C., Pochan, D.J., Wagner, N.J., Schneider, J.P.: Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels. Biomaterials 30, 1339–1347 (2009). doi:10.1016/j.biomaterials.2008.11.019

    CAS  Google Scholar 

  52. Lin, B.F., Megley, K.A., Viswanathan, N., et al.: pH-responsive branched peptide amphiphile hydrogel designed for applications in regenerative medicine with potential as injectable tissue scaffolds. J. Mater. Chem. 22, 19447 (2012). doi:10.1039/c2jm31745a

    CAS  Google Scholar 

  53. Tagalakis, A.D., Saraiva, L., McCarthy, D., et al.: Comparison of nanocomplexes with branched and linear peptides for SiRNA delivery. Biomacromolecules 14, 761–770 (2013)

    CAS  Google Scholar 

  54. Dong, H., Dube, N., Shu, J.Y., et al.: Long-circulating 15 nm micelles based on amphiphilic 3-helix peptide–PEG conjugates. ACS Nano 6, 5320–5329 (2012). doi:10.1021/nn301142r

    CAS  Google Scholar 

  55. Cui, H., Webber, M.J., Stupp, S.I.: Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010). doi:10.1002/bip.21328

    CAS  Google Scholar 

  56. Gosal, W.S., Clark, A.H., Ross-Murphy, S.B.: Fibrillar β-lactoglobulin gels: part 1. Fibril formation and structure. Biomacromolecules 5, 2408–2419 (2004). doi:10.1021/bm049659d

    CAS  Google Scholar 

  57. Liu, T.-Y., Hussein, W.M., Jia, Z., et al.: Self-adjuvanting polymer–peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 14, 2798–2806 (2013). doi:10.1021/bm400626w

    CAS  Google Scholar 

  58. Gosal, W.S., Clark, A.H., Pudney, P.D., Ross-Murphy, S.B.: Novel amyloid fibrillar networks derived from a globular protein: β-lactoglobulin. Langmuir 18, 7174–7181 (2002)

    CAS  Google Scholar 

  59. Lin, Y.-A., Ou, Y.-C., Cheetham, A.G., Cui, H.: Supramolecular polymers formed by ABC miktoarm star peptides. ACS Macro Lett 2, 1088–1094 (2013). doi:10.1021/mz400535g

    CAS  Google Scholar 

  60. Kavanagh, G.M., Clark, A.H., Ross-Murphy, S.B.: Heat-induced gelation of globular proteins. Part 5. Creep behaviour of β-lactoglobulin gels. Rheol. Acta 41, 276–284 (2002). doi:10.1007/s00397-001-0220-0

    CAS  Google Scholar 

  61. Hamley, I.W.: Self-assembly of amphiphilic peptides. Soft Matter 7, 4122–4138 (2011). doi:10.1039/c0sm01218a

    CAS  Google Scholar 

  62. Kroes-Nijboer, A., Venema, P., Linden, E.V.D.: Fibrillar structures in food. Food Funct. 3, 221–227 (2012). doi:10.1039/c1fo10163c

    CAS  Google Scholar 

  63. Lee, K., Mooney, D.: Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001). doi:10.1021/cr000108x

    CAS  Google Scholar 

  64. Bowerman, C.J., Nilsson, B.L.: Review self-assembly of amphipathic β-sheet peptides: Insights and applications. Pept. Sci. 98, 169–184 (2012). doi:10.1002/bip.22058

    CAS  Google Scholar 

  65. Cheng, R.P., Gellman, S.H., DeGrado, W.F.: β-Peptides: from structure to function. Chem. Rev. 101, 3219–3232 (2001)

    CAS  Google Scholar 

  66. Totosaus, A., Montejano, J.G., Salazar, J.A., Guerrero, I.: A review of physical and chemical protein-gel induction. Int. J. Food Sci. Technol. 37, 589–601 (2002). doi:10.1046/j.1365-2621.2002.00623.x

    CAS  Google Scholar 

  67. Hauser, C.A., Zhang, S.: Designer self-assembling peptide nanofiber biological materials. Chem. Soc. Rev. 39, 2780–2790 (2010). doi:10.1039/b921448h

    CAS  Google Scholar 

  68. Li, Y., Rodrigues, J., Tomás, H.: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41, 2193–2221 (2012). doi:10.1039/c1cs15203c

    CAS  Google Scholar 

  69. Heilshorn, S.C., Liu, J.C., Tirrell, D.A.: Cell-binding domain context affects cell behavior on engineered proteins. Biomacromolecules 6, 318–323 (2005). doi:10.1021/bm049627q

    CAS  Google Scholar 

  70. Ngo, J.T., Tirrell, D.A.: Noncanonical amino acids in the interrogation of cellular protein synthesis. Acc. Chem. Res. 44, 677–685 (2011). doi:10.1021/ar200144y

    CAS  Google Scholar 

  71. Gauthier, M.A., Klok, H.-A.: Peptide/protein–polymer conjugates: synthetic strategies and design concepts. Chem. Commun. 2591–2611 (2008). doi:10.1039/b719689j

  72. Yan, C., Altunbas, A., Yucel, T., et al.: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter 6, 5143–5156 (2010). doi:10.1039/c0sm00642d

    CAS  Google Scholar 

  73. Haines-Butterick, L., Rajagopal, K., Branco, M., et al.: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl. Acad. Sci. U.S.A. 104, 7791–7796 (2007). doi:10.1073/pnas.0701980104

    CAS  Google Scholar 

  74. Moss, J.A.: Unit 18.7: Guide for resin and linker selection in solid‐phase peptide synthesis. Curr. Protoc. Prot. Sci. 1–19 (2005)

    Google Scholar 

  75. Barany, G., Albericio, F.: Three-dimensional orthogonal protection scheme for solid-phase peptide synthesis under mild conditions. J. Am. Chem. Soc. 107, 4936–4942 (1985)

    CAS  Google Scholar 

  76. Naik, R.R., Stringer, S.J., Agarwal, G., et al.: Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1, 169–172 (2002). doi:10.1038/nmat758

    CAS  Google Scholar 

  77. Akdim, B., Pachter, R., Kim, S.S., et al.: Electronic properties of a graphene device with peptide adsorption: insight from simulation. ACS Appl. Mater. Interfaces 5, 7470–7477 (2013). doi:10.1021/am401731c

    CAS  Google Scholar 

  78. Dickerson, M.B., Sandhage, K.H., Naik, R.R.: Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008)

    CAS  Google Scholar 

  79. Helen, W., de Leonardis, P., Ulijn, R.V., et al.: Mechanosensitive peptide gelation: mode of agitation controls mechanical properties and nano-scale morphology. Soft Matter 7, 1732 (2011). doi:10.1039/c0sm00649a

    CAS  Google Scholar 

  80. Morris, K.L., Chen, L., Raeburn, J., et al.: Chemically programmed self-sorting of gelator networks. Nat. Commun. 4, 1480 (2013)

    Google Scholar 

  81. Ramachandran, S., Taraban, M.B., Trewhella, J., et al.: Effect of temperature during assembly on the structure and mechanical properties of peptide-based materials. Biomacromolecules 11, 1502–1506 (2010). doi:10.1021/bm100138m

    CAS  Google Scholar 

  82. Feng, Y., Taraban, M., Yu, Y.B.: The effect of ionic strength on the mechanical, structural and transport properties of peptide hydrogels. Soft Matter 8, 11723–11731 (2012). doi:10.1039/c2sm26572a

    CAS  Google Scholar 

  83. Kim, C.A., Berg, J.M.: Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 362, 267–270 (1993). doi:10.1038/362267a0

    CAS  Google Scholar 

  84. Jung, J.P., Gasiorowski, J.Z., Collier, J.H.: Fibrillar peptide gels in biotechnology and biomedicine. Biopolymers 94, 49–59 (2010). doi:10.1002/bip.21326

    CAS  Google Scholar 

  85. Nagy, K.J., Giano, M.C., Jin, A., et al.: Enhanced mechanical rigidity of hydrogels formed from enantiomeric peptide assemblies. J. Am. Chem. Soc. 133, 14975–14977 (2011). doi:10.1021/ja206742m

    CAS  Google Scholar 

  86. Whisstock, J.C., Bottomley, S.P.: Molecular gymnastics: serpin structure, folding and misfolding. Curr. Opin. Struct. Biol. 16, 761–768 (2006). doi:10.1016/j.sbi.2006.10.005

    CAS  Google Scholar 

  87. Nagarkar, R.P., Hule, R.A., Pochan, D.J., Schneider, J.P.: Domain swapping in materials design. Biopolymers 94, 141–155 (2010). doi:10.1002/bip.21332

    CAS  Google Scholar 

  88. Rajagopal, K., Lamm, M.S., Haines-Butterick, L.A., et al.: Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10, 2619–2625 (2009). doi:10.1021/bm900544e

    CAS  Google Scholar 

  89. Freire, F., Almeida, A.M., Fisk, J.D., et al.: Impact of strand length on the stability of parallel-beta-sheet secondary structure. Angew. Chem. Int. Ed. 50, 8735–8738 (2011). doi:10.1002/anie.201102986

    CAS  Google Scholar 

  90. Apostolovic, B., Danial, M., Klok, H.-A.: Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem. Soc. Rev. 39, 3541–3575 (2010). doi:10.1039/b914339b

    CAS  Google Scholar 

  91. Moutevelis, E., Woolfson, D.N.: A periodic table of coiled-coil protein structures. J. Mol. Biol. 385, 726–732 (2009). doi:10.1016/j.jmb.2008.11.028

    CAS  Google Scholar 

  92. Marsden, H.R., Kros, A.: Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew. Chem. Int. Ed. 49, 2988–3005 (2010). doi:10.1002/anie.200904943

    Google Scholar 

  93. Jing, P., Rudra, J.S., Herr, A.B., Collier, J.H.: Self-assembling peptide–polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9, 2438–2446 (2008)

    CAS  Google Scholar 

  94. Hule, R.A., Nagarkar, R.P., Altunbas, A., et al.: Correlations between structure, material properties and bioproperties in self-assembled β-hairpin peptide hydrogels. Faraday Discuss. 139, 251–264 (2008)

    CAS  Google Scholar 

  95. Branco, M.C., Nettesheim, F., Pochan, D.J., et al.: Fast dynamics of semiflexible chain networks of self-assembled peptides. Biomacromolecules 10, 1374–1380 (2009)

    CAS  Google Scholar 

  96. Altunbas, A., Lee, S.J., Rajasekaran, S.A., et al.: Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32, 5906–5914 (2011). doi:10.1016/j.biomaterials.2011.04.069

    CAS  Google Scholar 

  97. Yan, C., Mackay, M.E., Czymmek, K., et al.: Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. Langmuir 28, 6076–6087 (2012). doi:10.1021/la2041746

    CAS  Google Scholar 

  98. Anderson, S.B., Lin, C.-C., Kuntzler, D.V., Anseth, K.S.: The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer–peptide hydrogels. Biomaterials 32, 3564–3574 (2011)

    CAS  Google Scholar 

  99. Tian, Y.F., Devgun, J.M., Collier, J.H.: Fibrillized peptide microgels for cell encapsulation and 3D cell culture. Soft Matter 7, 6005–6011 (2011)

    CAS  Google Scholar 

  100. Jabbari, E.: Bioconjugation of hydrogels for tissue engineering. Curr. Opin. Biotechnol. 22, 655–660 (2011)

    CAS  Google Scholar 

  101. Haines-Butterick, L.A., Salick, D.A., Pochan, D.J., Schneider, J.P.: In vitro assessment of the pro-inflammatory potential of β-hairpin peptide hydrogels. Biomaterials 29, 4164–4169 (2008). doi:10.1016/j.biomaterials.2008.07.009

    CAS  Google Scholar 

  102. Rudra, J.S., Mishra, S., Chong, A.S., et al.: Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33, 6476–6484 (2012)

    CAS  Google Scholar 

  103. Koutsopoulos, S., Unsworth, L.D., Nagai, Y., Zhang, S.: Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc. Natl. Acad. Sci. 106, 4623–4628 (2009). doi:10.1073/pnas.0807506106

    CAS  Google Scholar 

  104. Branco, M.C., Pochan, D.J., Wagner, N.J., Schneider, J.P.: The effect of protein structure on their controlled release from an injectable peptide hydrogel. Biomaterials 31, 9527–9534 (2010)

    CAS  Google Scholar 

  105. Weber, L.M., Lopez, C.G., Anseth, K.S.: Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. J. Biomed. Mater. Res. 90A, 720–729 (2009). doi:10.1002/jbm.a.32134

    CAS  Google Scholar 

  106. Burdick, J.A., Anseth, K.S.: Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23, 4315–4323 (2002)

    CAS  Google Scholar 

  107. Van Tomme, S.R., Storm, G., Hennink, W.E.: In situ gelling hydrogels for pharmaceutical and biomedical applications. Int. J. Pharm. 355, 1–18 (2008)

    Google Scholar 

  108. Collier, J.H., Hu, B.H., Ruberti, J.W., et al.: Thermally and photochemically triggered self-assembly of peptide hydrogels. J. Am. Chem. Soc. 123, 9463–9464 (2001). doi:10.1021/ja011535a

    CAS  Google Scholar 

  109. Collier, J.H., Messersmith, P.B.: Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjug. Chem. 14, 748–755 (2003). doi:10.1021/bc034017t

    CAS  Google Scholar 

  110. Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). doi:10.1016/j.cell.2006.06.044

    CAS  Google Scholar 

  111. Kim, I.L., Mauck, R.L., Burdick, J.A.: Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32, 8771–8782 (2011)

    CAS  Google Scholar 

  112. Silva, D., Natalello, A., Sanii, B., et al.: Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications. Nanoscale 5, 704–718 (2013)

    CAS  Google Scholar 

  113. Webber, M.J., Tongers, J., Renault, M.-A., et al.: Development of bioactive peptide amphiphiles for therapeutic cell delivery. Acta Biomater. 6, 3–11 (2010). doi:10.1016/j.actbio.2009.07.031

    CAS  Google Scholar 

  114. Collier, J.H., Rudra, J.S., Gasiorowski, J.Z., Jung, J.P.: Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 39, 3413–3424 (2010). doi:10.1039/b914337h

    CAS  Google Scholar 

  115. Eliyahu-Gross, S., Bitton, R.: Environmentally responsive hydrogels with dynamically tunable properties as extracellular matrix mimetic. Rev. Chem. Eng. 29, 159–168 (2013)

    CAS  Google Scholar 

  116. Romano, N.H., Sengupta, D., Chung, C., Heilshorn, S.C.: Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix. Biochim. Biophys. Acta 1810, 339–349 (2011). doi:10.1016/j.bbagen.2010.07.005

    CAS  Google Scholar 

  117. Matson, J.B., Stupp, S.I.: Self-assembling peptide scaffolds for regenerative medicine. Chem. Commun. 48, 26 (2011). doi:10.1039/c1cc15551b

    Google Scholar 

  118. Jayawarna, V., Smith, A., Gough, J.E., Ulijn, R.V.: Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds. Biochem. Soc. Trans. 35, 535–537 (2007)

    CAS  Google Scholar 

  119. Giano, M.C., Pochan, D.J., Schneider, J.P.: Controlled biodegradation of self-assembling β-hairpin peptide hydrogels by proteolysis with matrix metalloproteinase-13. Biomaterials 32, 6471–6477 (2011). doi:10.1016/j.biomaterials.2011.05.052

    CAS  Google Scholar 

  120. Galler, K.M., Hartgerink, J.D., Cavender, A.C., et al.: A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Eng. Part A 18, 176–184 (2012). doi:10.1089/ten.tea.2011.0222

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrin Pochan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, J.E.P., Pochan, D. (2015). Peptidic Hydrogels. In: Loh, X. (eds) In-Situ Gelling Polymers. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-287-152-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-152-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-151-0

  • Online ISBN: 978-981-287-152-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics