Skip to main content

Biopolymer

  • Chapter
  • First Online:
Tropical Natural Fibre Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1394 Accesses

Abstract

In this chapter a study of biopolymer is presented. Biopolymer is classified into five categories in this book namely polylactide, thermoplastic starch, cellulose, polyhydroxyalkanoates and synthetic biopolymer.

This chapter is written together with J. Sahari and Mohd Kamal Mohd Shah of Universiti Malaysia Sabah, Malaysia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous: Making the most of starch. http://www.rsc.org/Education/EiC/issues/2006Sept/MakingMostStarch.asp (2006). Accessed 26 Apr 2011

  2. Arvanitoyannis, I.: Totally-and-partially biodegradable polymer blends based on natural and synthetic macromolecules: preparation and physical properties and potential as food packaging materials. J. Macromol. Sci. 39(2), 205–271 (1999)

    Article  Google Scholar 

  3. Averous, L., Moro, L., Dole, P., Fringant, C.: Properties of thermoplastic blends: starch-polycaprolactone. Polymer 41, 4157–4167 (2000)

    Article  Google Scholar 

  4. Bagheri, R.: Effect of processing on the melt degradation of starch-filled polypropylene. Polym. Int. 48, 1257–1263 (1999)

    Article  Google Scholar 

  5. Buleon, A.: Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23(2), 85–112 (1998)

    Article  Google Scholar 

  6. Crank, M., Patel, M., Marscheider-Weidemann, F., Schleich, J., Hüsing, B., Angerer, G.: Techno-economic feasibility of large-scale production of bio-based polymers in Europe (PRO-BIP). Final Report Prepared for the European Commission’s Institute for Prospective Technological Studies (IPTS) (2004)

    Google Scholar 

  7. Hon, D.N.-S.: Embrapa instrumentação agropecuária. In: Frollini, E., Leão, A.L., Mattoso (eds.) Natural Polymers and Agrofibers Composites, p. 292. USP-IQSC, São Carlos (2000)

    Google Scholar 

  8. Ellis, R.P.: Starch production and industrial use. J. Sci. Food Agric. 77(3), 289–311 (1998)

    Article  Google Scholar 

  9. Enomoto, K., Ajioka, M., Yamaguchi, A.: U.S. Pat. No. 5,310,865 (1994)

    Google Scholar 

  10. Evangelista, R.L., Nikolov, Z.L., Sung, W., Jane, J., Gelina, R.J.: Effect of compounding and starch modification on properties of starch-filled low density polyethylene. Ind. Eng. Chem. Res. 30, 1841–1846 (1991)

    Article  Google Scholar 

  11. Fang, J., Fawler, P., Eserig, C., González, R., Costa, J., Chamudis, L.: Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohydr. Polym. 60(1), 39–42 (2005)

    Article  Google Scholar 

  12. Farrington, D.W., Davies, J.L., Blackburn, R.S.: Poly(lactic acid) fibers. In: Blackburn, R.S. (ed.) Biodegradable and Sustainable Fibers, pp. 191–220. Woodhead Publishing, Cambridge (2005)

    Chapter  Google Scholar 

  13. Fukui, T., Shiomi, N., Doi, Y.: Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180, 667–673 (1998)

    Google Scholar 

  14. Garlotta, D.: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2001)

    Article  Google Scholar 

  15. Gaudin, S., Lourdin, D., Le Botlan, D., Ilari, J.L., Colonna, P.: Plasticization and mobility in starch-sorbitol film. J. Cereal Sci. 29, 273–284 (1999)

    Article  Google Scholar 

  16. Gerngross, T.U., Slater, S.C.: Biopolymers and the environment. Science 299(3), 822–825 (2003)

    Article  Google Scholar 

  17. Gupta, B., Revagade, N., Hilborn poly(lactic acid) fiber: an overview. Prog. Polym. Sci. 32, 455–482 (2007)

    Google Scholar 

  18. Hartmann, M.H.: In: Kaplan, D.L. (ed.) Biopolymers from Renewable Resources, pp. 367–411. Springer, Berlin (1998)

    Chapter  Google Scholar 

  19. Ichikawa, F., Kobayashi, M.,. Ohta, M, Yoshida, Y., Obuchi, S., Itoh, H.: U.S. Pat No. 5,440,008 (1995)

    Google Scholar 

  20. John, R.P., Gangadharan, D., Nampoothiri, K.M.: Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for l-lactic acid production from starchy wastes. Bioresour. Technol. 99, 8008–8015 (2008)

    Google Scholar 

  21. John, R.P., Nampoothiri, K.M., Pandey, A.: Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem. 41, 759–763 (2006)

    Article  Google Scholar 

  22. Kalichevsky, M.T., Jaroszkiewicz, E.M., Blanshard, J.M.V.: A study of the glass transition of amylopectin-sugar mixtures. Polymer 34, 346–358 (1993)

    Article  Google Scholar 

  23. Kampeerapappun, P., Phattararittigul, T., Jittrong, S., Kullachod, D.: Effect of chitosan and mordants on dyeability of cotton fabrics with Ruellia tuberosa Linn. Chiang Mai J. Sci. 38, 95–104 (2010)

    Google Scholar 

  24. Kashima, T., Kameoka, T., Higuchi, C., Ajioka, M., Yamaguchi, A.: U.S. Pat No. 5,428,126 (1995)

    Google Scholar 

  25. Kim, Y.B., Lenz, R.W.: Polyesters from microorganisms. In: Babel, W., Steinbüchel, A. (eds.) Biopolyesters, pp. 51–79. Springer, Berlin (2001)

    Chapter  Google Scholar 

  26. Komarek, R.J., Gardner, R.M., Buchanan, C.M., Gedon, S.C.: Aerobic biodegradation of cellulose acetate. J. Appl. Polym. Sci. 50, 1739 (1993)

    Article  Google Scholar 

  27. Leaversuch, R.: Biodegaradable polyester: packaging goes green. Polym. Plast. Technol. Eng. 48, 66 (2002)

    Google Scholar 

  28. Leda, R., Castilho, D., Mitchell, A., Denise, M.G.: Freire. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol. 100, 5996–6009 (2009)

    Article  Google Scholar 

  29. Lemoigne, M.: Produits de dehydration et de polymerisation de l’acide ß-oxobutyrique. Bull. Soc. Chim. Biol. 8, 770–782 (1926)

    Google Scholar 

  30. Lunt, J.: Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 59, 145–152 (1998)

    Article  Google Scholar 

  31. Ma, X., Yu, J., Jin, F.: Urea and formamide as a mixed plasticizer for thermoplastic starch. Polym. Int. 53, 1780–1785 (2004)

    Article  Google Scholar 

  32. Mohanty, A.K., Misra, M., Hinrichsen, G.: Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng. 276(277), 1–24 (2000)

    Article  Google Scholar 

  33. Mohanty, A.K., Misra, M., Drzal, L.T., Selke, S.E., Harte, B.R., Hinrichsen, G.: Natural fibres, biopolymers, and biocomposites: an introduction. In: Natural Fibres, Biopolymers and Biocomposites, pp. 1–36. CRC Press, Boca Raton (2005)

    Google Scholar 

  34. Nakamura, S., Tobolsky, A.V.: Viscoelastic properties of plasticized amylose films. J. Appl. Polym. Sci. 11, 1371–1381 (1967)

    Article  Google Scholar 

  35. Nath, A., Dixit, M., Bandiya, A., Chavda, S., Desai, A.J.: Enhanced PHB production and scale up studies using cheese whey in fed batch cultures of Methylobacteria sp. ZP24. Bioresour. Technol. 99, 5749–5755 (2008)

    Article  Google Scholar 

  36. Nitz, H., Semke, H., Landers, R., Mulhaupt, R.: Reactive extrusion of polycaprolactone compounds containing wood flour and lignin. J. Apply Polym. Sci. 81, 1972–1984 (2001)

    Article  Google Scholar 

  37. Ohta, M., Yoshida, Y., Obuchi, S.: U.S. Pat No. 5,444,143 (1995)

    Google Scholar 

  38. Potts, J.E., Clendinning, R.A., Ackart, W.B., Niegish, W.D.: Biodegradability of synthetic polymers. Polym. Sci. Technol. 3, 61 (1973)

    Google Scholar 

  39. Ray, S.S., Bousmina, M.: Biodegradable polymers and their silicate nanocomposites: In greening the 21st century materials world. Prog. Mater Sci. 50(8), 962–1079 (2005)

    Article  Google Scholar 

  40. Offerman, R.J.: U.S. Pat. No. 6,462,120 (2002)

    Google Scholar 

  41. Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A.: Thermo-mechanical behaviors of thermopolymer starch derived from sugar palm tree (Arenga pinnata). Carbohydr. Polym. 92, 1711–1716 (2013)

    Article  Google Scholar 

  42. Sangwichien, C., Sumanatrakool, P., Patarapaiboolchai, O.: Effect of filler loading on curing characteristics and mechanical properties of thermoplastic vulcanizate. Chiang Mai J. Sci. 35, 141–149 (2008)

    Google Scholar 

  43. Steinbüchel, A.: Perspectives for biotechnological production and utilization of biopolymer: metabolic engineering of polyhydroalkanoate biosyenthesis pathways as a successful example. Macromol. Biosci. 1, 1–24 (2001)

    Article  Google Scholar 

  44. Toriz, G., Gatenholm, P., Seiler, B.D., Tindall, D.: Cellulose fiber-reinforced cellulose esters: biocomposites for the future. In: Natural Fibres, Biopolymers and Biocomposites, pp. 617–639. CRC Press, Boca Raton (2005)

    Google Scholar 

  45. Van der Walle, G.A.M., de Koning, G.J.M., Weusthuis, R.A., Eggink, G.: Properties, modifications and applications of biopolyesters. Adv. Biochem. Eng. 71, 263–291 (2001)

    Google Scholar 

  46. Vilpoux, O., Avérous, L.: Starch-based plastics in technology, use and potentialities of Latin American starchy tubers. In: Cereda, M.P., Vilpoux, O. (eds.) NGO Raízes and Cargill Foundation, pp. 521–553. NGO Raízes and Cargill Foundation, São Paolo (2004)

    Google Scholar 

  47. Wallen, L.L., Rohwedder, W.K.: Biopolymers of activated sludge. Environ. Sci. Technol. 8, 576–579 (1974)

    Article  Google Scholar 

  48. Whistler, R.L., Daniel, J.R.: Molecular structure of starch. In: Whistler, R.L., BeMiller, J.N., Paschall, E.F. (eds.) Starch, Chemistry and Technology, 2nd edn, pp. 312–388. Academic Press, Inc, Orlando (1984)

    Google Scholar 

  49. Xu, Y., Kim, K., Hanna, M., Nag, D.: Chitosan–starch composite film: preparation and characterization. Ind. Crops Prod. 21(2), 185–192 (2005)

    Article  Google Scholar 

  50. Ya’acob, A.M., Sapuan, S.M., Ahmad, M., Dahlan, K.Z.M.: The mechanical properties of polypropylene / glass fiber composites prepared using different samples preparation methods. Chiang Mai J. Sci. 31, 233–241 (2004)

    Google Scholar 

  51. Zinn, M., Witholt, B., Egli, T.: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53, 5–21 (2001)

    Article  Google Scholar 

  52. Zobel, H.F.: Molecules to granules: a comprehensive starch review. Starch 40(2), 44–50 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Sapuan Salit .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Salit, M.S. (2014). Biopolymer. In: Tropical Natural Fibre Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-287-155-8_3

Download citation

Publish with us

Policies and ethics