Skip to main content

Microlocal Analysis of Some Synthetic Aperture Radar Imaging Problems

  • Chapter
  • First Online:
Mathematical Models, Methods and Applications

Part of the book series: Industrial and Applied Mathematics ((INAMA))

  • 1298 Accesses

Abstract

In this article, we analyze the microlocal properties of the linearized forward scattering operator \({\mathcal{F}},\) which arises in synthetic aperture radar imaging. A frequently applied imaging technique is to study the normal operator \({\mathcal{F}^{\ast} \mathcal{F}}\) (\({\mathcal{F}^{\ast}}\) is the L 2 adjoint of \({\mathcal{F}}\)). However, such an imaging technique introduces artifacts in the image. We study the structure of these artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambartsoumian G, Felea R, Krishnan VP, Nolan C, Quinto ET (2013) A class of singular Fourier integral operators in synthetic aperture radar imaging. J. Funct. Anal. 264(1):246–269

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson L-E (1988) On the determination of a function from spherical averages. SIAM J Math Anal 19:214–232

    Google Scholar 

  3. Cheney M (2001) A mathematical tutorial on synthetic aperture radar. SIAM Rev 43(2):301–312 (electronic)

    Google Scholar 

  4. Cheney M, Borden B (2009) Fundamentals of Radar Imaging. CBMS-NSF regional conference series in applied mathematics, vol 79. Society for Industrial and Applied Mathematics

    Google Scholar 

  5. Cohen J, Bleistein H (1979) Velocity inversion procedure for acoustic waves. Geophysics 44:1077–1085

    Article  Google Scholar 

  6. de Hoop MV (2003) Microlocal analysis of seismic inverse scattering. In: Inside out: inverse problems and applications. Math Sci Res Inst Publ 47:219–296. Cambridge Univeristy Press, Cambridge

    Google Scholar 

  7. Dowling T (2009) Radar imaging using multiply scattered waves. In: Ph.D. thesis, University of Limerick, Ireland

    Google Scholar 

  8. Duistermaat JJ (2011) Fourier integral operators. Modern Birkhäuser Classics. Birkhäuser/Springer, New York. Reprint of the 1996 original

    Google Scholar 

  9. Felea R (2005) Composition of Fourier integral operators with fold and blowdown singularities. Comm Partial Differ Equ 30(10–12):1717–1740

    Article  MathSciNet  MATH  Google Scholar 

  10. Felea R (2007) Displacement of artefacts in inverse scattering. Inverse Prob 23(4):1519–1531

    Article  MathSciNet  MATH  Google Scholar 

  11. Golubitsky M, Guillemin V (1973) Stable mappings and their singularities. Springer, New York. Graduate Texts Math 14

    Google Scholar 

  12. Greenleaf A, Uhlmann G (1989) Nonlocal inversion formulas for the X-ray transform. Duke Math J 58(1):205–240

    Article  MathSciNet  MATH  Google Scholar 

  13. Greenleaf A, Uhlmann G (1990) Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. Ann Inst Fourier (Grenoble) 40(2):443–466

    Article  MathSciNet  MATH  Google Scholar 

  14. Greenleaf A, Uhlmann G (1990) Estimates for singular Radon transforms and pseudodifferential operators with singular symbols. J Funct Anal 89(1):202–232

    Article  MathSciNet  MATH  Google Scholar 

  15. Greenleaf A, Uhlmann G (1990) Microlocal techniques in integral geometry. In: Integral geometry and tomography (Arcata, CA, 1989). Contemp Math 113:121–135. Amer Math Soc. Providence, RI

    Google Scholar 

  16. Greenleaf A, Uhlmann G (1991) Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. II Duke Math J 64(3):415–444

    Article  MathSciNet  MATH  Google Scholar 

  17. Grigis A, Sjöstrand J (1994) Microlocal analysis for differential operators. London mathematical society lecture note series, vol 196. Cambridge University Press, Cambridge. An introduction

    Google Scholar 

  18. Guillemin V, Uhlmann G (1981) Oscillatory integrals with singular symbols. Duke Math J 48(1):251–267

    Article  MathSciNet  MATH  Google Scholar 

  19. Hörmander L (1971) Fourier integral operators. I Acta Math 127(1–2):79–183

    Article  MathSciNet  MATH  Google Scholar 

  20. Hörmander L (2003) The analysis of linear partial differential operators. I. Classics in mathematics. Springer, Berlin, 2003. Distribution theory and Fourier analysis, Reprint of the second (1990) edition (Springer, Berlin; MR1065993 (91 m:35001a))

    Google Scholar 

  21. Horne AM, Yates G (2002) Bistatic synthetic aperture radar. pp 6–10

    Google Scholar 

  22. Krishnan VP, Quinto ET (2011) Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Probl Imaging 5(3):659–674

    Article  MathSciNet  MATH  Google Scholar 

  23. Louis AK, Quinto ET (2000) Local tomographic methods in SONAR. In: Colton D, Engl H, Louis A, McLaughlin J, Rundell W (eds) Surveys on solution methods for inverse problems. Springer, Vienna/New York, pp 147–154

    Google Scholar 

  24. Melrose RB, Uhlmann GA (1979) Lagrangian intersection and the Cauchy problem. Commun Pure Appl Math 32(4):483–519

    Article  MathSciNet  MATH  Google Scholar 

  25. Nolan CJ, Cheney M (2004) Microlocal analysis of synthetic aperture radar imaging. J Fourier Anal Appl 10(2):133–148

    Article  MathSciNet  MATH  Google Scholar 

  26. Nolan CJ, Cheney M, Dowling T, Gaburro R (2006) Enhanced angular resolution from multiply scattered waves. Inverse Prob 22(5):1817–1834

    Article  MathSciNet  MATH  Google Scholar 

  27. Stefanov P, Uhlmann G (2013) Is a curved flight path in SAR better than a straight one? SIAM J Appl Math 73(4):1596–1612

    Article  MathSciNet  MATH  Google Scholar 

  28. Trèves F (1980) Introduction to pseudodifferential and Fourier integral operators, vol 1. Plenum Press, New York. Pseudodifferential operators, The University Series in Mathematics

    Google Scholar 

  29. Trèves F (1980) Introduction to pseudodifferential and Fourier integral operators, vol 2. Plenum Press, New York. Fourier integral operators, The University Series in Mathematics

    Google Scholar 

  30. Yarman CE, Yazici B (2008) Synthetic aperture hitchhiker imaging. IEEE Trans Image Process 17(11):2156–2173

    Article  MathSciNet  MATH  Google Scholar 

  31. Yarman CE, Yazici B, Cheney M (2008) Bistatic synthetic aperture radar imaging for arbitrary flight trajectories. IEEE Trans Image Process 17(1):84–93

    Article  MathSciNet  Google Scholar 

  32. Yazici B, Cheney M, Yarman CE (2006) Synthetic-aperture inversion in the presence of noise and clutter. Inverse Prob 22(5):1705–1729

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Abul Hasan Siddiqi, Prof. Pammy Manchanda and the organizers for the invitation to give a talk in the 11th Annual Conference of the Indian Society of Industrial and Applied Mathematics titled, “Emerging Mathematical Methods, Models and Algorithms for Science and Technology” at Gautam Buddha University (GBU) on December 15 and 16, 2012, commemorating the 125th birth year of Srinivasa Ramanujan, and for the warm hospitality during his stay on GBU campus. He also thanks Prof. Siddiqi for inviting to contribute an article in the proceedings. The material here is a slightly expanded version of the talk given at this conference.

The author was partially supported by NSF Grant DMS 1109417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswaran P. Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Krishnan, V.P. (2015). Microlocal Analysis of Some Synthetic Aperture Radar Imaging Problems. In: Siddiqi, A., Manchanda, P., Bhardwaj, R. (eds) Mathematical Models, Methods and Applications. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-287-973-8_4

Download citation

Publish with us

Policies and ethics