Skip to main content

Semi-Volatile Organic Compounds (SVOCs): Phthalates and Phosphorous Frame Retardants and Health Risks

  • Chapter
  • First Online:
Indoor Environmental Quality and Health Risk toward Healthier Environment for All

Abstract

Semi-volatile organic compounds (SVOCs) are a subgroup of volatile organic compounds that have boiling points of 260 °C–400 °C. They are slowly emitted from source materials and partition among the gas phase, airborne particles, and dust fractions. Phthalates and flame retardants (FRs) are dominant SVOCs in indoor environments. Sources of these compounds and their indoor levels and health risks are discussed herein. Epidemiological and experimental studies have provided consistent evidences of the associations between concentrations of phthalate and asthma and allergies. However, data for internal exposure to phthalates are inconsistent and limited. A few experimental studies have demonstrated the immunocytotoxicity of organophosphorus FRs; however, there is no epidemiological evidence to support this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bizzari SN. Chemical economics handbook plasticizers. IHS Chemical, 2013.

    Google Scholar 

  2. Wormuth M, et al. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006;26(3):803–24.

    Article  PubMed  Google Scholar 

  3. Kavlock R, et al. NTP Center for the Evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di(2-ethylhexyl) phthalate. Reprod Toxicol. 2002;16(5):529–653.

    Article  CAS  PubMed  Google Scholar 

  4. Kavlock R, et al. NTP Center for the Evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of butyl benzyl phthalate. Reprod Toxicol. 2002;16(5):453–87.

    Article  CAS  PubMed  Google Scholar 

  5. Kavlock R, et al. NTP Center for the Evaluation of risks to human reproduction: phthalates expert panel report on the reproductive and developmental toxicity of di-n-butyl phthalate. Reprod Toxicol. 2002;16(5):489–527.

    Article  CAS  PubMed  Google Scholar 

  6. 2005/84/EC, D. Directive 2005/84/EC of the European Parliament and of the council of 14 December 2005; 2005.

    Google Scholar 

  7. 2007/19/EC, D. Directive 2002/72/EC relating to plastic materials and articles intended to come into contact with food and Council Directive 85/572/EEC laying down the list of simulants to be used for testing migration of constituents of plastic materials and articles intended to come into contact with foodstuffs; 2007.

    Google Scholar 

  8. Commission, C.P.S., Consumer product safety act (Codified at 15 U.S.C. §§ 2051−2089)(Public Law 92-573; 86 Stat. 1207, Oct. 27, 1972); 2011.

    Google Scholar 

  9. 厚生労働省医薬食品局食品安全部, 食品、添加物等の規格基準の 一部を改正する件について in 食安発 0906 第 1 号 2010.

    Google Scholar 

  10. WHO. Frame retardants: Tris(chloropropyl)phosphate and Tris(2-chloroethyl) phosphate. Geneva: World Health Organization; 1998.

    Google Scholar 

  11. Van den Eede N, et al. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ Int. 2011;37(2):454–61.

    Article  PubMed  CAS  Google Scholar 

  12. Stapleton HM, et al. Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environ Sci Technol. 2009;43(19):7490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. WHO, Flame Retardants. Tris (2-butoxyethyl) phosphate, Tris (2-ethylhexyl)phosphate and Tetrakis (hydroxymethyl)phosphonium salt. Geneva: World Health Organization; 2000.

    Google Scholar 

  14. Kanazawa A, et al. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air. 2010;20(1):72–84.

    Article  CAS  PubMed  Google Scholar 

  15. Moreau-Guigon E, et al. Seasonal fate and gas/particle partitioning of semi-volatile organic compounds in indoor and outdoor air. Atmos Environ. 2016;147:423–33.

    Article  CAS  Google Scholar 

  16. Bergh C, et al. Organophosphate and phthalate esters in air and settled dust – a multi-location indoor study. Indoor Air. 2010;21(1):67–76.

    Article  PubMed  CAS  Google Scholar 

  17. Kashyap D, Agarwal T. Concentration and factors affecting the distribution of phthalates in the air and dust: a global scenario. Sci Total Environ. 2018;635:817–27.

    Article  CAS  PubMed  Google Scholar 

  18. Pei XQ, et al. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments. Atmos Environ. 2013;68:17–23.

    Article  CAS  Google Scholar 

  19. Takeuchi S, et al. Detection of 34 plasticizers and 25 flame retardants in indoor air from houses in Sapporo, Japan. Sci Total Environ. 2014;491:28–33.

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, et al. Indoor phthalate concentration and exposure in residential and office buildings in Xi’an, China. Atmos Environ. 2014;87:146–52.

    Article  CAS  Google Scholar 

  21. Song NR, et al. Biomonitoring of urinary di(2-ethylhexyl) phthalate metabolites of mother and child pairs in South Korea. Environ Int. 2013;54:65–73.

    Article  CAS  PubMed  Google Scholar 

  22. Bu Z, et al. Indoor phthalate concentration in residential apartments in Chongqing, China: implications for preschool children’s exposure and risk assessment. Atmos Environ. 2016;127:34–45.

    Article  CAS  Google Scholar 

  23. Zhang LD, et al. Prepubertal exposure to genistein alleviates di-(2-ethylhexyl) phthalate induced testicular oxidative stress in adult rats. Biomed Res Int. 2014;2014:598630.

    PubMed  PubMed Central  Google Scholar 

  24. Fromme H, et al. Phthalates in German daycare centers: occurrence in air and dust and the excretion of their metabolites by children (LUPE 3). Environ Int. 2013;61:64–72.

    Article  CAS  PubMed  Google Scholar 

  25. Boberg J, et al. Reproductive and behavioral effects of diisononyl phthalate (DINP) in perinatally exposed rats. Reprod Toxicol. 2011;31(2):200–9.

    Article  CAS  PubMed  Google Scholar 

  26. Blanchard O, et al. Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environ Sci Technol. 2014;48(7):3959–69.

    Article  CAS  PubMed  Google Scholar 

  27. Rudel RA, et al. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect. 2011;119(7):914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Q, et al. Levels of phthalate esters in settled house dust from urban dwellings with young children in Nanjing, China. Atmos Environ. 2013;69:258–64.

    Article  CAS  Google Scholar 

  29. Ait Bamai Y, et al. Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci Total Environ. 2014;485-486c:153–63.

    Article  CAS  Google Scholar 

  30. Gevao B, et al. Phthalates in indoor dust in Kuwait: implications for non-dietary human exposure. Indoor Air. 2013;23(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman K, et al. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: a case-control study. Environ Int. 2017;107:235–42.

    Article  CAS  PubMed  Google Scholar 

  32. Fromme H, et al. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air. 2004;14(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  33. Kubwabo C, et al. Analysis of selected phthalates in Canadian indoor dust collected using household vacuum and standardized sampling techniques. Indoor Air. 2013;23(6):506–14.

    Article  CAS  PubMed  Google Scholar 

  34. Guo Y, Kannan K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environ Sci Technol. 2011;45(8):3788–94.

    Article  CAS  PubMed  Google Scholar 

  35. Bi C, et al. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: association with season, building characteristics, and childhood asthma. Environ Int. 2018;121(Pt 1):916–30.

    Article  CAS  PubMed  Google Scholar 

  36. Shin HM, et al. Determining source strength of semivolatile organic compounds using measured concentrations in indoor dust. Indoor Air. 2013;24(3):260–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rudel RA, et al. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ Sci Technol. 2003;37(20):4543–53.

    Article  CAS  PubMed  Google Scholar 

  38. Dodson RE, et al. Semivolatile organic compounds in homes: strategies for efficient and systematic exposure measurement based on empirical and theoretical factors. Environ Sci Technol. 2014;49:113–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hsu NY, et al. Predicted risk of childhood allergy, asthma, and reported symptoms using measured phthalate exposure in dust and urine. Indoor Air. 2012;22(3):186–99.

    Article  CAS  PubMed  Google Scholar 

  40. Langer S, et al. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atmos Environ. 2010;44(19):2294–301.

    Article  CAS  Google Scholar 

  41. Bornehag CG, et al. Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect. 2005;113(10):1399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bergh C, et al. Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air. 2011;21(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  43. Luongo G, Östman C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air. 2016;26(3):414.

    Article  CAS  PubMed  Google Scholar 

  44. Ait Bamai Y, et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci Total Environ. 2013;468-469C:147–57.

    Google Scholar 

  45. Johnson-Restrepo B, Kannan K. An assessment of sources and pathways of human exposure to polybrominated diphenyl ethers in the United States. Chemosphere. 2009;76(4):542–8.

    Article  CAS  PubMed  Google Scholar 

  46. Batterman SA, et al. Concentrations and emissions of Polybrominated diphenyl ethers from U.S. houses and garages. Environ Sci Technol. 2009;43(8):2693–700.

    Article  CAS  PubMed  Google Scholar 

  47. Chen L, et al. In- and outdoor sources of polybrominated diphenyl ethers and their human inhalation exposure in Guangzhou, China. Atmos Environ. 2008;42(1):78–86.

    Article  CAS  Google Scholar 

  48. de Wit CA, Bjorklund JA, Thuresson K. Tri-decabrominated diphenyl ethers and hexabromocyclododecane in indoor air and dust from Stockholm microenvironments 2: indoor sources and human exposure. Environ Int. 2012;39(1):141–7.

    Article  PubMed  CAS  Google Scholar 

  49. Meng G, et al. Internal exposure levels of typical POPs and their associations with childhood asthma in Shanghai, China. Environ Res. 2016;146:125–35.

    Article  CAS  PubMed  Google Scholar 

  50. Stuart H, et al. Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices: causes of variability and implications for human exposure. Environ Int. 2008;34(8):1170–5.

    Article  CAS  PubMed  Google Scholar 

  51. Bureau E.C. European Union risk assessment report, in bis(pentabromophenyl) ether: European Commission; 2002.

    Google Scholar 

  52. Zhu N-z, et al. Concentration, sources and human exposure of Polybrominated diphenyl ethers in indoor dust in Heilongjiang Province, China. Bull Environ Contam Toxicol. 2013;91(6):640–4.

    Article  CAS  PubMed  Google Scholar 

  53. Lim Y-W, et al. Exposure assessment and health risk of poly-brominated diphenyl ether (PBDE) flame retardants in the indoor environment of elementary school students in Korea. Sci Total Environ. 2014;470-471:1376–89.

    Article  CAS  PubMed  Google Scholar 

  54. Mizouchi S, et al. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere. 2015;123:17–25.

    Article  CAS  PubMed  Google Scholar 

  55. Ali N, et al. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion. Environ Int. 2013;55:62–70.

    Article  CAS  PubMed  Google Scholar 

  56. Tajima S, et al. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings. Sci Total Environ. 2014;478:190–9.

    Article  CAS  PubMed  Google Scholar 

  57. Araki A, et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor Air. 2014;24(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  58. García M, Rodríguez I, Cela R. Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples. J Chromatogr A. 2007;1152(1):280–6.

    Article  PubMed  CAS  Google Scholar 

  59. Ali N, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment. Chemosphere. 2012;88(11):1276–82.

    Article  CAS  PubMed  Google Scholar 

  60. Dirtu AC, et al. Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010. Environ Int. 2012;49:1–8.

    Article  CAS  PubMed  Google Scholar 

  61. Brommer S, et al. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J Environ Monit. 2012;14(9):2482–7.

    Article  CAS  PubMed  Google Scholar 

  62. Fromme H, et al. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3). Environ Int. 2014;71:158–63.

    Article  CAS  PubMed  Google Scholar 

  63. Ali N, et al. Assessment of human exposure to indoor organic contaminants via dust ingestion in Pakistan. Indoor Air. 2012;22(3):200–11.

    Article  CAS  PubMed  Google Scholar 

  64. Dodson RE, et al. Urinary biomonitoring of phosphate flame retardants: levels in California adults and recommendations for future studies. Environ Sci Technol. 2014;48(23):13625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luongo G, Östman C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air. 2015;26(3):414–25.

    Article  PubMed  CAS  Google Scholar 

  66. Xu F, et al. Comprehensive study of human external exposure to organophosphate flame retardants via air, dust, and hand wipes: the importance of sampling and assessment strategy. Environ Sci Technol. 2016;50(14):7752–60.

    Article  CAS  PubMed  Google Scholar 

  67. Saito I, Onuki A, Seto H. Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air. 2007;17(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  68. Langer S, et al. Organophosphate esters in dust samples collected from Danish homes and daycare centers. Chemosphere. 2016;154:559–66.

    Article  CAS  PubMed  Google Scholar 

  69. Cequier E, et al. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ Sci Technol. 2014;48(12):6827–35.

    Article  CAS  PubMed  Google Scholar 

  70. Bornehag CG, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect. 2004;112(14):1393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kolarik B, et al. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ Health Perspect. 2008;116(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  72. Callesen M, et al. Associations between selected allergens, phthalates, nicotine, polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. Indoor Air. 2014;24(2):136–47.

    Article  CAS  PubMed  Google Scholar 

  73. Beko G, et al. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. Environ Res. 2015;137:432–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ait Bamai Y, et al. Exposure to phthalates in house dust and associated allergies in children aged 6-12 years. Environ Int. 2016;96:16–23.

    Article  CAS  PubMed  Google Scholar 

  75. Ait Bamai Y, et al. Association of filaggrin gene mutations and childhood eczema and wheeze with phthalates and phosphorus flame retardants in house dust: the Hokkaido study on environment and Children’s health. Environ Int. 2018;121(Pt 1):102–10.

    Article  CAS  PubMed  Google Scholar 

  76. Bertelsen RJ, et al. Urinary biomarkers for phthalates associated with asthma in Norwegian children. Environ Health Perspect. 2013;121(2):251–6.

    Article  PubMed  CAS  Google Scholar 

  77. Callesen M, et al. Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. Int J Hyg Environ Health. 2014;217(6):645–52.

    Article  CAS  PubMed  Google Scholar 

  78. Butala JH, et al. Phthalate treatment does not influence levels of IgE or Th2 cytokines in B6C3F1 mice. Toxicology. 2004;201(1–3):77–85.

    Article  CAS  PubMed  Google Scholar 

  79. Hansen JS, et al. Adjuvant effects of inhaled mono-2-ethylhexyl phthalate in BALB/cJ mice. Toxicology. 2007;232(1–2):79–88.

    Article  CAS  PubMed  Google Scholar 

  80. Koike E, et al. Effects of diisononyl phthalate on atopic dermatitis in vivo and immunologic responses in vitro. Environ Health Perspect. 2010;118(4):472–8.

    Article  CAS  PubMed  Google Scholar 

  81. Larsen ST, et al. Effects of mono-2-ethylhexyl phthalate on the respiratory tract in BALB/c mice. Hum Exp Toxicol. 2004;23(11):537–45.

    Article  CAS  PubMed  Google Scholar 

  82. Larsen ST, et al. Adjuvant effect of di-n-butyl-, di-n-octyl-, di-iso-nonyl- and di-iso-decyl phthalate in a subcutaneous injection model using BALB/c mice. Pharmacol Toxicol. 2002;91(5):264–72.

    Article  CAS  PubMed  Google Scholar 

  83. Lee MH, et al. Enhancement of interleukin-4 production in activated CD4+ T cells by diphthalate plasticizers via increased NF-AT binding activity. Int Arch Allergy Immunol. 2004;134(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  84. Deutschle T, et al. A controlled challenge study on Di(2-ethylhexyl) phthalate (DEHP) in house dust and the immune response in human nasal mucosa of allergic subjects. Environ Health Perspect. 2008;116(11):1487–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meng G, et al. Typical halogenated persistent organic pollutants in indoor dust and the associations with childhood asthma in Shanghai, China. Environ Pollut. 2016;211:389–98.

    Article  CAS  PubMed  Google Scholar 

  86. Koike E, et al. Brominated flame retardants stimulate mouse immune cells in vitro. J Appl Toxicol. 2013;33(12):1451–9.

    Article  CAS  PubMed  Google Scholar 

  87. Araki A, et al. Associations between allergic symptoms and phosphate flame retardants in dust and their urinary metabolites among school children. Environ Int. 2018;119:438–46.

    Article  CAS  PubMed  Google Scholar 

  88. Canbaz D, et al. Exposure to organophosphate and polybrominated diphenyl ether flame retardants via indoor dust and childhood asthma. Indoor Air. 2016;26(3):403–13.

    Article  CAS  PubMed  Google Scholar 

  89. Hoffman K, et al. Temporal trends in exposure to organophosphate flame retardants in the United States. Environ Sci Technol Lett. 2017;4(3):112–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88(10):1119–53.

    Article  PubMed  CAS  Google Scholar 

  91. Canbaz D, et al. Immunotoxicity of organophosphate flame retardants TPHP and TDCIPP on murine dendritic cells in vitro. Chemosphere. 2017;177:56–64.

    Article  CAS  PubMed  Google Scholar 

  92. Krivoshiev BV, et al. Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq. Toxicol In Vitro. 2018;46:178–88.

    Article  CAS  PubMed  Google Scholar 

  93. Gibson EA, et al. Flame retardant exposure assessment: findings from a behavioral intervention study. J Expo Sci Environ Epidemiol. 2018;29:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ait Bamai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ait Bamai, Y. (2020). Semi-Volatile Organic Compounds (SVOCs): Phthalates and Phosphorous Frame Retardants and Health Risks. In: Kishi, R., Norbäck, D., Araki, A. (eds) Indoor Environmental Quality and Health Risk toward Healthier Environment for All. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-32-9182-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9182-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9181-2

  • Online ISBN: 978-981-32-9182-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics