Skip to main content

Paraquat-Induced Oxidative Stress and Lung Inflammation

  • Chapter
  • First Online:
Oxidative Stress in Lung Diseases

Abstract

Lung pathogenesis is associated with the oxidative stress which is one of the major causes of the lung damage. Oxidative stress is an important factor (cause) for development of chronic and degenerative diseases including cancer, aging, rheumatoid arthritis, diabetes, cataract, chronic inflammatory diseases, autoimmune disorders, cardiovascular and neurodegenerative diseases. Emerging evidences suggest that the glutathione redox couple may entail dynamic regulation of protein function by reversible disulfide bond formation on kinases, phosphatases, and transcription factors. Reactive oxygen species (ROS) enhances inflammation through the activation of transcription factors, such as nuclear factor (NF)-κB and activator protein-1 through various kinases (c-Jun-activated kinase, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase). This results in enhanced expression of proinflammatory mediators. Many environmental pollutants play an important role in causing oxidative stress leading to lung damage. In present chapter impact of paraquat, a known herbicide has been discussed in detail for its effects on oxidative stress and lung inflammation causing injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheeseman KH, Slater TF (1993) An introduction to free radicals chemistry. Br Med Bull 49(3):481–493

    Article  CAS  PubMed  Google Scholar 

  3. Irshad M, Chaudhuri PS (2002) Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol 40:1233–1239

    CAS  PubMed  Google Scholar 

  4. Evans P, Halliwell B (1999) Free radicals and hearing: cause, consequence, and criteria. Ann N Y Acad Sci 884(1):19–40

    Article  CAS  PubMed  Google Scholar 

  5. Mc Cord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108(8):652–659

    Article  CAS  Google Scholar 

  6. Rao AL, Bharani M, Pallavi V (2006) Role of antioxidants and free radicals in health and disease. Adv Pharmacol Toxicol 7(1):29–38

    Google Scholar 

  7. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  PubMed  Google Scholar 

  8. Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118(2):413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhatia M, Zemans RL, Jeyaseelan S (2012) Role of chemokines in the pathogenesis of acute lung injury. Am J Respir Cell Mol Biol 46(5):566–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manicone AM (2009) Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol 5(1):63–75

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bagchi K, Puri S (1998) Free radicals and antioxidants in health and disease. East Mediterr Health J 4:350–360

    Google Scholar 

  12. Ebadi M (2001) Antioxidants and free radicals in health and disease: an introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Prominent Press, Arizona

    Google Scholar 

  13. Dinis-Oliveira RJ, Duarte JA, Sanchez-Navarro A, Remiao F, Bastos ML, Carvalho F (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38(1):13–71

    Article  CAS  PubMed  Google Scholar 

  14. Tsai WT (2013) A review on environmental exposure and health risks of herbicide paraquat. Toxicol Environ Chem 95(2):197–206

    Article  CAS  Google Scholar 

  15. Wesseling C, De Joode BVW, Ruepert C, León C, Monge P, Hermosillo H, Partanen LJ (2001) Paraquat in developing countries. Int J Occup Environ Health 7(4):275–286

    Article  CAS  PubMed  Google Scholar 

  16. Summers LA (1980) The bipyridinium herbicides. Academic, London

    Google Scholar 

  17. Wagner SL (1981) Clinical toxicology of agricultural chemicals. Environ Health Sci 309

    Google Scholar 

  18. Eddleston M (2000) Patterns and problems of deliberate self-poisoning in the developing world. Q J Med 93(11):715–731

    Article  CAS  Google Scholar 

  19. Brooks RE (1971) Ultrastructure of lung lesions produced by ingested chemicals. I. Effect of the herbicide paraquat on mouse lung. Lab Invest 25(6):536–545

    CAS  PubMed  Google Scholar 

  20. Sandhu JS, Dhiman A, Mahajan R, Sandhu P (2003) Outcome of paraquat poisoning. A five-year study. Indian J Nephrol 13:64–68

    Google Scholar 

  21. Mohammadi-Karakani A, Ghazi-Khansari M, Sotoudeh M (2006) Lisinopril ameliorates paraquat-induced lung fibrosis. Clin Chim Acta 367(1):170–174

    Article  CAS  PubMed  Google Scholar 

  22. Muthukumaran K, Laframboise AJ, Pandey S (2011) In: Hasaneen MNAE-G (ed) Herbicides and the risk of neurodegenerative disease. INTECH, Maastricht, p 153

    Google Scholar 

  23. Delirrad M, Majidi M, Boushehri B (2015) Clinical features and prognosis of paraquat poisoning: a review of 41 cases. Int J Clin Exp Med 8(5):8122

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kemi (2006) Paraquat. Annex: notification of final regulatory action on paraquat, Sweden. Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade, Chemical Review Committee, Fifth meeting, Rome, 23–27 March, 2009. UNEP/FAO/RC/CRC.5/8

    Google Scholar 

  25. Sittipunt C (2005) Paraquat poisoning. Respir Care 50:383–385

    PubMed  Google Scholar 

  26. United States Environmental Protection Agency (1997) Registration Eligibility Decision (RED), office of prevention, pesticides and toxic substances, EPA 738-F-96-018: paraquat dichloride. US EPA, Washington, DC

    Google Scholar 

  27. Zerin T, Kim YS, Hong SY, Song HY (2012) Protective effect of methylprednisolone on paraquat-induced A549 cell cytotoxicity via induction of efflux transporter, P-glycoprotein expression. Toxicol Lett 208(2):101–107

    Article  CAS  PubMed  Google Scholar 

  28. Rose HS, Smith LL (1977a) The relevance of paraquat accumulation by tissues. In: Biochemical mechanisms of paraquat toxicity. Academic, New York, pp 71–79

    Chapter  Google Scholar 

  29. Rose MS, Smith LL (1977b) Tissue uptake of paraquat and diquat. Gen Pharmacol 8(3):173–176

    Article  CAS  PubMed  Google Scholar 

  30. Sharp CW, Ottolenghi A, Poaner HS (1972) Correlation of paraquat toxicity with tissue concentrations and weight loss of the rat. Toxicol Appl Pharmacol 22(2):241–251

    Article  CAS  PubMed  Google Scholar 

  31. Rose MS, Lock EA, Smith LL, Wyatt I (1976) Paraquat accumulation. Tissue and species specificity. Biochem Pharmacol 25(4):419–423

    Article  CAS  PubMed  Google Scholar 

  32. Smith P, Heath D, Kay JM (1974) The pathogenesis and structure of paraquat-induced pulmonary fibrosis in rats. J Pathol 114(2):57–67

    Article  CAS  PubMed  Google Scholar 

  33. Litchfield MH, Daniel JW, Longshaw S (1973) The tissue distribution of the bipyridilium herbicides diquat and paraquat in rats and mice. Toxicology 1(2):155–165

    Article  CAS  PubMed  Google Scholar 

  34. Smith LL, Lewis CP, Wyatt I, Cohen GM (1990) The importance of epithelial uptake systems in lung toxicity. Environ Health Perspect 85:25–30

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoet PH, Nemery B (2000) Polyamines in the lung: polyamine uptake and polyamine-linked pathological or toxicological conditions. Am J Phys Lung Cell Mol Phys 278(3):417–433

    Google Scholar 

  36. Gordonsmith RH, Brooke-Taylor S, Smith LL, Cohen GM (1983) Structural requirements of compounds to inhibit pulmonary diamine accumulation. Biochem Pharmacol 32(24):3701–3709

    Article  CAS  PubMed  Google Scholar 

  37. Dunbar JR (1987) Lung paraquat content and effects on the lung glutathione antioxidant system, NADPH, and polyamines resulting from intravenous coinfusion of paraquat and putrescine to rats

    Google Scholar 

  38. Ranjbar A, Pasalar P, Sedighi A, Abdollahi M (2002) Induction of oxidative stress in paraquat formulating workers. Toxicol Lett 131(3):191–194

    Article  CAS  PubMed  Google Scholar 

  39. Yumino K (2002) Paraquat- and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes. J Biochem 131(4):565–570

    Article  CAS  PubMed  Google Scholar 

  40. Bus JS, Aust SD, Gibson JE (1974) Superoxide-and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun 58(3):749–755

    Article  CAS  PubMed  Google Scholar 

  41. Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48(6):623–640

    Article  CAS  PubMed  Google Scholar 

  42. Sengupta A, Manna K, Datta S, Das U, Biswas S, Chakrabarti N, Dey S (2017) Herbicide exposure induces apoptosis, inflammation, immune modulation and suppression of cell survival mechanism in murine model. RSC Adv 7(23):13957–13970

    Article  CAS  Google Scholar 

  43. Toygar M, Aydin I, Agilli M, Aydin FN, Oztosun M, Gul H, Macit E, Karslioglu Y, Topal T, Uysal B, Honca M (2015) The relation between oxidative stress, inflammation, and neopterin in the paraquat-induced lung toxicity. Hum Exp Toxicol 34(2):198–204

    Article  CAS  PubMed  Google Scholar 

  44. Amirshahrokhi K (2013) Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice. Int Immunopharmacol 17(2):210–215

    Article  CAS  PubMed  Google Scholar 

  45. Windsor ACJ, Mullen PG, Fowler AA, Sugerman HJ (1993) Role of the neutrophil in adult respiratory distress syndrome. Br J Surg 80(1):10–17

    Article  CAS  PubMed  Google Scholar 

  46. Martin WJ (1984) Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway: an in vitro model of neutrophil-mediated lung injury. Am Rev Respir Dis 130(2):209–213

    Article  CAS  PubMed  Google Scholar 

  47. Amirshahrokhi K, Bohlooli S, Chinifroush MM (2011) The effect of methylsulfonylmethane on the experimental colitis in the rat. Toxicol Appl Pharmacol 253(3):197–202

    Article  CAS  PubMed  Google Scholar 

  48. Martin WJ, Howard DM (1986) Paraquat-induced neutrophil alveolitis: reduction of the inflammatory response by pretreatment with endotoxin and hyperoxia. Lung 164(1):107–120

    Article  CAS  PubMed  Google Scholar 

  49. Tian ZG, Ji Y, Yan WJ, Xu CY, Kong QY, Han F, Zhao Y, Pang QF (2013) Methylene blue protects against paraquat-induced acute lung injury in rats. Int Immunopharmacol 17(2):309–313

    Article  CAS  PubMed  Google Scholar 

  50. Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS (1978) Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest 61(5):1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weiss SJ, Young J, LoBuglio AF, Slivka AD, Nimeh NF (1981) Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Investig 68(3):714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zahorec R (2001) Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy 102(1):5–14

    CAS  PubMed  Google Scholar 

  53. Templeton AJ, McNamara MG, Šeruga B, Vera-Badillo FE, Aneja P, Ocaña A, Leibowitz-Amit R et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):124

    Article  CAS  Google Scholar 

  54. Zhou DC, Zhang H, Luo ZM, Zhu QX, Zhou CF (2016) Prognostic value of hematological parameters in patients with paraquat poisoning. Sci Rep 6:36235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Closa D, Folch-Puy E (2004) Oxygen free radicals and the systemic inflammatory response. IUBMB Life 56(4):185–191

    Article  CAS  PubMed  Google Scholar 

  57. Situnayake RD, Crump BJ, Thurnham DI, Davies JA, Davis M (1987) Evidence for lipid peroxidation in man following paraquat ingestion. Hum Toxicol 6(1):94–98

    Article  CAS  PubMed  Google Scholar 

  58. Watanabe N, Shiki Y, Morisaki N, Saito Y, Yoshida S (1986) Cytotoxic effects of paraquat and inhibition of them by vitamin E. Biochim Biophys Acta Gen Subj 883(3):420–425

    Article  CAS  Google Scholar 

  59. STY Y, Guo HR, Su YS, Lin HJ, Hou CC, Chen HM, Wang YJ (2006) Protective effects of N-acetylcysteine treatment post acute paraquat intoxication in rats and in human lung epithelial cells. Toxicology 223(3):181–190

    Article  CAS  Google Scholar 

  60. Fukushima T, Tanaka K, Heejin LI, Moriyama M (2002) Mechanism of cytotoxicity of paraquat. Environ Health Prev Med 7(3):89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hara S, Endo T, Kuriiwa F, Kano S (1991) Mechanism of paraquat-stimulated lipid peroxidation in mouse brain and pulmonary microsomes. J Pharm Pharmacol 43(10):731–733

    Article  CAS  PubMed  Google Scholar 

  62. Terao J, Matsushita S (1977) Products formed by photosensitized oxidation of unsaturated fatty acid esters. J Am Oil Chem Soc 54(6):234–239

    Article  CAS  Google Scholar 

  63. Kellogg EW 3rd, Fridovich I (1975) Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J Biol Chem 250(22):8812–8817

    CAS  PubMed  Google Scholar 

  64. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816

    Article  PubMed  Google Scholar 

  65. Martinez FJ, Safrin W, Weycker D, Starko KM, Bradford WZ, King TE (2005) The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med 142(12):963–967

    Article  PubMed  Google Scholar 

  66. Charles H, Brown MS (2015) Pharm, RPh, CACPA review of pulmonary fibrosis. US Pharm 40(7):12–16

    Google Scholar 

  67. Chen CM, Chou HC, Hsu HH, Wang LF (2005) Transforming growth factor-β1 upregulation is independent of angiotensin in paraquat-induced lung fibrosis. Toxicology 216(2):181–187

    Article  CAS  PubMed  Google Scholar 

  68. Vijeyaratnam GS, Corrin B (1971) Experimental paraquat poisoning: a histo-logical and electron-optical study of the changes in the lung. J Pathol 103:123–129

    Article  CAS  PubMed  Google Scholar 

  69. Fukuda Y, Ferrans VJ, Schoenberger CI, Rennard S, Crystal RG (1985) Patterns of pulmonary structural remodeling after experimental paraquat toxicity. The morphogenesis of intraalveolar fibrosis. Am J Pathol 118:452

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lang YD, Chang SF, Wang LF, Chen CM (2010) Chymase mediates paraquat-induced collagen production in human lung fibroblasts. Toxicol Lett 193(1):19–25

    Article  CAS  PubMed  Google Scholar 

  71. Xu XL, Wang W, Song ZJ, Ding H, Duan XH, Meng HC, Chong J (2011) Imaging in detecting sites of pulmonary fibrosis induced by paraquat. World J Emerg Med 2(1):45

    PubMed  PubMed Central  Google Scholar 

  72. Rocco PR, Negri EM, Kurtz PM, Vasconcellos FP, SILVA GH, Capelozzi VL, Zin WA (2001) Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am J Respir Crit Care Med 164(6):1067–1071

    Article  CAS  PubMed  Google Scholar 

  73. Pardo A, Selman M (2012) Role of matrix metaloproteases in idiopathic pulmonary fibrosis. Fibrogenesis Tissue Repair 5(1):S9

    Article  PubMed  PubMed Central  Google Scholar 

  74. Corbel M, Belleguic C, Boichot E, Lagente V (2002) Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 18(1):51–61

    Article  CAS  PubMed  Google Scholar 

  75. Davey A, McAuley DF, O’Kane CM (2011) Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J 38:959–970

    Article  CAS  PubMed  Google Scholar 

  76. Ouchi H, Fujita M, Ikegame S, Ye Q, Inoshima I, Harada E, Kuwano K, Nakanishi Y (2008) The role of collagenases in experimental pulmonary fibrosis. Pulm Pharmacol Ther 21(2):401–408

    Article  CAS  PubMed  Google Scholar 

  77. Kim JY, Choeng HC, Ahn C, Cho SH (2009) Early and late changes of MMP-2 and MMP-9 in bleomycin-induced pulmonary fibrosis. Yonsei Med J 50(1):68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R (1994) The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149(3):818–824

    Article  CAS  PubMed  Google Scholar 

  79. Singh G, Gladdy G, Chandy TT, Sen N (2014) Incidence and outcome of acute lung injury and acute respiratory distress syndrome in the surgical intensive care unit. Indian J Crit Care Med 18(10):659

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bhadade RR, De Souza RA, Harde MJ, Khot A (2011) Clinical characteristics and outcomes of patients with acute lung injury and ARDS. J Postgrad Med 57(4):286

    Article  CAS  PubMed  Google Scholar 

  81. Fauci AS (2008) Harrison’s principles of internal medicine, vol 2. McGraw-Hill, Medical Publishing Division, New York, pp 1612–1615

    Google Scholar 

  82. Wang BL, Tu YY, Fu JF, Zhong YX, Fu GQ, Tian XX, Wang LH, Gong L, Ren QY (2011) Unbalanced MMP/TIMP-1 expression during the development of experimental pulmonary fibrosis with acute paraquat poisoning. Mol Med Rep 4(2):243–248

    CAS  PubMed  Google Scholar 

  83. Zemans RL, Colgan SP, Downey GP (2009) Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 40(5):519–535

    Article  CAS  PubMed  Google Scholar 

  84. Schoenberger CI, Rennard SI, Bitterman PB, Fukuda Y, Ferrans VJ, Crystal RG (1984) Paraquat-induced pulmonary fibrosis: role of the alveolitis in modulating the development of fibrosis. Am Rev Respir Dis 129(1):168–173

    CAS  PubMed  Google Scholar 

  85. Smith EA, Mayfield CI (1978) Paraquat: determination, degradation, and mobility in soil. Water Air Soil Pollut 9(4):439–452

    CAS  Google Scholar 

  86. Copland GM, Kolín A, Shulman HS (1974) Fatal pulmonary intra-alveolar fibrosis after paraquat ingestion. N Engl J Med 291(6):290–292

    Article  CAS  PubMed  Google Scholar 

  87. McGowan SE (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6(11):2895–2904

    Article  CAS  PubMed  Google Scholar 

  88. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rodemann HP, Rennekampff HO (2011) Functional diversity of fibroblasts. In: Tumor-associated fibroblasts and their matrix. Springer, Dordrecht/New York, pp 23–36

    Chapter  Google Scholar 

  90. White ES (2015) Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc 12(1):30–33

    Article  Google Scholar 

  91. Shahzeidi S, Mulier BD, De Crombrugghe B, Jeffery PK, McAnulty RJ, Laurent GJ (1993) Enhanced type III collagen gene expression during bleomycin induced lung fibrosis. Thorax 48(6):622–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Erroi A, Bianchi M, Ghezzi P (1992) The pneumotoxicant paraquat potentiates IL-1 and TNF production by human mononuclear cells. Inflamm Res 36(1):66–69

    CAS  Google Scholar 

  93. Harchegani AL, Hemmati AA, Nili-Ahmadabadi A, Darabi B, Shabib S (2017) Cromolyn sodium attenuates paraquat-induced lung injury by modulation of proinflammatory cytokines. Drug Res 67(05):283–288

    Article  CAS  Google Scholar 

  94. Bartram U, Speer CP (2004) The role of transforming growth factor beta in lung development and disease. Chest 125:754–765

    Article  PubMed  Google Scholar 

  95. Brody AR, Warshamana GS, Jing Y, Pociask DA (2001) Expression of transforming growth factor-beta induces fibroproliferative pulmonary disease in fibrosis-resistant mice. Chest 120(1):48–49

    Article  Google Scholar 

  96. Yao R, Cao Y, He YR, Lau WB, Zeng Z, Liang ZA (2015) Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat. PLoS One 10(5):0125169

    Google Scholar 

  97. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toth M, Sohail A, Fridman R (2012) Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Metastasis Res Protoc:121–135

    Google Scholar 

  99. Marshall RP, Bellingan G, Webb S, Puddicombe A, Goldsack N, McANULTY RJ, Laurent GJ (2000) Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome. Am J Respir Crit Care Med 162:1783–1788

    Article  CAS  PubMed  Google Scholar 

  100. Gevao B, Semple KT, Jones KC (2000) Bound pesticide residues in soils: a review. Environ Pollut 108(1):3–14

    Article  CAS  PubMed  Google Scholar 

  101. Liu S, Liu K, Sun Q, Liu W, Xu W, Denoble P, Tao H, Sun X (2011) Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats. BioMed Res Int 2011:1

    Google Scholar 

  102. Hu X, Shen H, Wang Y, Zhao M (2017) Liver X receptor agonist TO901317 attenuates paraquat-induced acute lung injury through inhibition of NF-κB and JNK/p38 MAPK signal pathways. BioMed Res Int 2017:1–13

    Google Scholar 

  103. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  104. Zhang B, Hirahashi J, Cullere X, Mayadas TN (2003) Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J Biol Chem 278(31):28443–28454

    Article  CAS  PubMed  Google Scholar 

  105. Flohé L, Brigelius-Flohé R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22(6):1115–1126

    Article  PubMed  Google Scholar 

  106. Mitra S, Abraham E (2006) Participation of superoxide in neutrophil activation and cytokine production. Biochim Biophys Acta Mol Basis Dis 1762(8):732–741

    Article  CAS  Google Scholar 

  107. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  108. Coulombe P, Meloche S (2007) Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim Biophys Acta Mol Cell Res 1773(8):1376–1387

    Article  CAS  Google Scholar 

  109. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta Mol Basis Dis 1802(4):396–405

    Article  CAS  Google Scholar 

  110. Peng J, Mao XO, Stevenson FF, Hsu M, Andersen JK (2004) The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway. J Biol Chem 279(31):32626–32632

    Article  CAS  PubMed  Google Scholar 

  111. Wang X, Luo F, Zhao H (2014) Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB–IL-6/TNF-α positive-feedback circuit. PLoS One 9(4):93837

    Article  CAS  Google Scholar 

  112. Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, Qian CY (2014) Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement Altern Med 14(1):498

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Malekinejad H, Rezabakhsh A, Rahmani F, Razi M (2013) Paraquat exposure up-regulates cyclooxygenase-2 in the lungs, liver and kidneys in rats. Iran J Pharm Res 12(4):887

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Guan Z, Buckman SY, Pentland AP, Templeton DJ, Morrison AR (1998) Induction of cyclooxygenase-2 by the activated MEKK1→ SEK1/MKK4→ p38 mitogen-activated protein kinase pathway. J Biol Chem 273(21):12901–12908

    Article  CAS  PubMed  Google Scholar 

  116. Pei YH, Cai XM, Chen J, Sun BD, Sun ZR, Wang X, Qian XM (2014) The role of p38 MAPK in acute paraquat-induced lung injury in rats. Inhal Toxicol 26(14):880–884

    Article  CAS  PubMed  Google Scholar 

  117. Vancurova I, Vancura A (2012) Regulation and function of nuclear IκBα in inflammation and cancer. Am J Clin Exp Immunol 1(1):56

    PubMed  PubMed Central  Google Scholar 

  118. Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA (2001) Possible new role for NF-κB in the resolution of inflammation. Nat Med 7(12):1291–1297

    Article  CAS  PubMed  Google Scholar 

  120. Alvira CM (2014) Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. Birth Defects Res A Clin Mol Teratol 100(3):202–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Meredith TJ, Vale JA (1987) Treatment of paraquat poisoning in man: methods to prevent absorption. Hum Toxicol 6(1):49–55

    Article  CAS  PubMed  Google Scholar 

  122. Idid SZ, Lee CY (1996) Effects of Fuller’s Earth and activated charcoal on oral absorption of paraquat in rabbits. Clin Exp Pharmacol Physiol 23(8):679–681

    Article  CAS  PubMed  Google Scholar 

  123. Guadreault P, Friedman PA, Lovejoy FH (1985) Efficacy of activated charcoal and magnesium citrate in the treatment of oral paraquat intoxication. Ann Emerg Med 14(2):123–125

    Article  Google Scholar 

  124. Okonek S, Setyadharma H, Borchert A, Krienke EG (1982) Activated charcoal is as effective as fuller’s earth or bentonite in paraquat poisoning. Klin Wochenschr 60(4):207–210

    Article  CAS  PubMed  Google Scholar 

  125. Gawarammana IB, Buckley NA (2011) Medical management of paraquat ingestion. Br J Clin Pharmacol 72(5):745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suntres ZE (2002) Role of antioxidants in paraquat toxicity. Toxicology 180(1):65–77

    Article  CAS  PubMed  Google Scholar 

  127. Reigart JR, Roberts JR (1999) Paraquat and diquat. In: Recognition and management of pesticide poisonings. Office of Pesticide Programs, Environmental Protection Agency, Washington DC, pp 108–117

    Google Scholar 

  128. Newstead CG (1996) Cyclophosphamide treatment of paraquat poisoning. Thorax 51(7):661–663

    Article  Google Scholar 

  129. Malone JDG, Carmody M, Keogh B, O’Dwyer WF (1971) Paraquat poisoning – a review of nineteen cases. J Irish Med Assoc 64(405):59–68

    CAS  Google Scholar 

  130. Lin JL, Wei MC, Liu YC (1996) Pulse therapy with cyclophosphamide and methylprednisolone in patients with moderate to severe paraquat poisoning: a preliminary report. Thorax 51(7):661–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pond SM, Rivory LP, Hampson EC, Roberts MS (1993) Kinetics of toxic doses of paraquat and the effects of hemoperfusion in the dog. J Toxicol Clin Toxicol 31(2):229–246

    Article  CAS  PubMed  Google Scholar 

  132. Halliwell B (1995) How to characterize an antioxidant- An update. Biochem Soc Symp 61:73–101

    Article  CAS  PubMed  Google Scholar 

  133. Eizadi-Mood N, Sabzghabaee AM, Yaraghi A, Montazeri K, Golabi M, Sharifian A, Badri S (2011) Effect of antioxidants on the outcome of therapy in paraquat-intoxicated patients. Trop J Pharm Res 10(1):27–31

    Article  Google Scholar 

  134. Hong SY, Hwang KY, Lee EY, Eun SW, Cho SR, Han CS, Park YH, Chang SK (2002) Effect of vitamin C on plasma total antioxidant status in patients with paraquat intoxication. Toxicol Lett 126:51–59

    Article  CAS  PubMed  Google Scholar 

  135. Block ER (1979) Potentiation of acute paraquat toxicity by vitamin E deficiency. Lung 156:195–203

    Article  CAS  PubMed  Google Scholar 

  136. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. In the molecular targets and therapeutic uses of curcumin in health and disease. Adv Exp Med Biol 595:1–75

    Article  PubMed  Google Scholar 

  137. Reddy ACP, Lokesh BR (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137(1):1–8

    Article  CAS  PubMed  Google Scholar 

  138. Unnikrishnan MK, Rao MNA (1995) Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146(1):35–37

    Article  CAS  PubMed  Google Scholar 

  139. Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37

    Article  CAS  PubMed  Google Scholar 

  140. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53

    CAS  Google Scholar 

  141. Balasubramanian K (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem 54(10):3512–3520

    Article  CAS  PubMed  Google Scholar 

  142. Dulbecco P, Savarino V (2013) Therapeutic potential of curcumin in digestive diseases. World J Gastroenterol 19(48):9256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15(1):195–218

    Article  CAS  PubMed  Google Scholar 

  144. Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Immunomodulatory and therapeutic activity of curcumin. Int Immunopharmacol 11(3):331–341

    Article  CAS  PubMed  Google Scholar 

  145. Marx D, Williams G, Birkhoff M (2015) Intranasal drug administration—An attractive delivery route for some drugs. In: Drug discovery and development-from molecules to medicine. InTech, Rijeka

    Google Scholar 

  146. Chien YW, Chang SF (1987) Intranasal drug delivery for systemic medications. Crit Rev Ther Drug Carrier Syst 4(2):67–194

    CAS  PubMed  Google Scholar 

  147. Subhashini, Chauhan PS, Kumari S, Kumar JP, Chawla R, Dash D, Singh M, Singh R (2013) Intranasal curcumin and its evaluation in murine model of asthma. Int Immunopharmacol 17(733–743):2013

    Google Scholar 

  148. Chauhan PS, Dash D, Singh R (2014) Intranasal curcumin attenuates airway remodeling in murine model of chronic asthma. Int Immunopharmacol 21:63–75

    Article  CAS  PubMed  Google Scholar 

  149. Venkatesan N (1999) Pulmonary protective effects of curcumin against paraquat toxicity. Life Sci 66(2):21–28

    Article  Google Scholar 

  150. Tyagi N, Kumari A, Dash D, Singh R (2014) Protective effects of intranasal curcumin on paraquat induced acute lung injury (ALI) in mice. Environ Toxicol Pharmacol 38:913–921

    Article  CAS  PubMed  Google Scholar 

  151. Ray S, Sengupta A, Ray A (2007) Effects of paraquat on anti-oxidant system in rats. Indian J Exp Biol 45:432–438

    CAS  PubMed  Google Scholar 

  152. Senator A, Rachidi W, Lehmann S, Favier A, Benboubetra M (2004) Prion protein protects against DNA damage induced by paraquat in cultured cells. Free Radical Biol Med 37:1224–1230

    Article  CAS  Google Scholar 

  153. Decoté-Ricardo D, Chagas K, Rocha J, Redner P, Lopes UG, Cambier JC, de Arruda LB, Peçanha LMT (2009) Modulation of in vitro murine B-lymphocyte response by curcumin. Phytomedicine 16(10):982–988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Camacho-Barquero L, Villegas I, Sánchez-Calvo JM, Talero E, Sánchez-Fidalgo S, Motilva V, de la Lastra CA (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2 and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7(3):333–342

    Article  CAS  PubMed  Google Scholar 

  155. Bhattacharyya S, Hossain DMS, Mohanty S, Sen GS, Chattopadhyay S, Banerjee S, Chakraborty J, Das K, Sarkar D, Das T, Sa G (2010) Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol 7(4):306–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jeong H, Yun C (2012) Effect of curcumin on LPS-induced neutrophil activation and acute lung injury. Eur Respir J 40(56):635

    Google Scholar 

  157. Madan B, Ghosh B (2003) Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock 19(1):91–96

    Article  CAS  PubMed  Google Scholar 

  158. Jančinová V, Perečko T, Nosáľ R, Košťálová D, Bauerová K, Drábiková K (2009) Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition. Eur J Pharmacol 612(1):161–166

    Article  PubMed  CAS  Google Scholar 

  159. Moon DO, Kim MO, Lee HJ, Choi YH, Park YM, Heo MS, Kim GY (2008) Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochem Biophys Res Commun 375(2):275–279

    Article  CAS  PubMed  Google Scholar 

  160. Lee JH, Kim JW, Ko NY, Mun SH, Her E, Kim BK et al (2008) Curcumin, a constituent of curry, suppresses IgE-mediated allergic response and mast cell activation at the level of Syk. J Allergy Clin Immunol 121(5):1225–1231

    Article  CAS  PubMed  Google Scholar 

  161. Kuramoto Y, Yamada K, Tsuruta O, Sugano M (1996) Effect of natural food colorings on immunoglobulin production in vitro by rat spleen lymphocytes. Biosci Biotechnol Biochem 60(10):1712–1713

    Article  CAS  PubMed  Google Scholar 

  162. Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK (2005) Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27(3):485–497

    Article  CAS  PubMed  Google Scholar 

  163. Sikora E, Bielak-Zmijewska A, Piwocka K, Janusz S, Radziszewska E (1997) Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment. Biochem Pharmacol 54(8):899–907

    Article  CAS  PubMed  Google Scholar 

  164. Fiala M (2015) Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-γ production: benefits of omega-3 with curcumin against cancer. Molecules 20(2):3020–3026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Varalakshmi C, Ali AM, Pardhasaradhi BVV, Srivastava RM, Singh S, Khar A (2008) Immunomodulatory effects of curcumin: in-vivo. Int Immunopharmacol 8(5):688–700

    Article  CAS  PubMed  Google Scholar 

  166. Golombick T, Diamond TH, Manoharan A, Ramakrishna R (2015) The effect of curcumin (as Meriva) on absolute lymphocyte count (ALC), NK cells and T cell populations in patients with stage 0/1 chronic lymphocytic leukemia. J Cancer Ther 6(07):566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grants Commission and Science and Engineering Research Board (SERB)-Department of Science and Technology (DST), New Delhi, India, in part for financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyagi, N., Singh, R. (2020). Paraquat-Induced Oxidative Stress and Lung Inflammation. In: Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T. (eds) Oxidative Stress in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-32-9366-3_11

Download citation

Publish with us

Policies and ethics