Skip to main content

Experimental Investigation of Dehumidifier Hybrid Air Conditioner Integrated Zeotropic Refrigerant Blend R-407C Air Source Water Heat Pump

  • Conference paper
  • First Online:
Renewable Energy and Climate Change

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 161))

  • 1461 Accesses

Abstract

Air gets heated while passing through the desiccant wheel in a hybrid air conditioning system and needs to be cooled before passing to cooling coil. This hot air can be an effective heat source for the air source heat pump to heat the water. The present work includes experimental investigation of the dehumidifier integrated hybrid R-407C air source water heat pump under different air temperature to achieve hot water. The results exhibit that heating capacity increases by 15% by increasing the air-source temperature from 30 to 45 °C. End loop COP of the system is reduced by 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cakir, U., Comakli, K., Yuksel, F.: The role of cogeneration systems in sustainability of energy. Energy Convers. Manage. 63, 196–202 (2012)

    Article  Google Scholar 

  2. Cakir, U., Comakli, K., Comakli, O., Karsli, S.: An experimental exergetic comparison of four different heat pump systems working at same conditions: as air to air, air to water, water to water and water to air. Appl. Energy 58, 210–219 (2013)

    Article  Google Scholar 

  3. Hepbasli, A., Kalinci, Y.: A review of heat pump water heating systems. Renew. Sustain. Energy Rev. 13, 1211–1229 (2009)

    Article  Google Scholar 

  4. Fard, A.H., Aidoun, Z., Ouzzane, M.: Applying refrigerants mixtures with thermal glide in cold climate air source heat pumps. Appl. Therm. Eng. 62, 714–722 (2014)

    Article  Google Scholar 

  5. Zhang, J., Wang, R.Z., Wu, J.Y.: System optimization and experimental research on air source heat pump water heater. Appl. Therm. Eng. 27(5), 1029–1035 (2007)

    Article  Google Scholar 

  6. MacArthur, J.W., Grald, E.W.: Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data. Int. J. Refrig 12(1), 29–41 (1989)

    Article  Google Scholar 

  7. Techarungpaisan, P., Theerakulpisut, S., Priprem, S.: Modeling of a split type air conditioner with integrated water heater. Energy Convers. Manag. 48, 1222–1237 (2007)

    Article  Google Scholar 

  8. Ji, J., Pei, G., Chow, T.: Performance of multifunctional domestic heat-pump system. Appl. Energy 80(3), 307–326 (2005)

    Article  Google Scholar 

  9. Mei, V.C., Chen, F.C., Domitrovic, R.E., Kilpatrick, J.K., Carter, J.A.: A study of a natural convection immersed condenser heat pump water heater. ASHRAE Trans. Part 2, 109 (2003)

    Google Scholar 

  10. Guo, J.J., Wu, J.Y., Wang, R.Z., Li, S.: Experimental research and operation optimization of an air-source heat pump water heater. Appl. Energy 88, 4128–4138 (2011)

    Article  Google Scholar 

  11. Laipradit, P., Tainsuwan, J., Kiatsiriroat, T., Aye, L.: Theoretical performance analysis of heat pump water heaters using carbon dioxide as refrigerant. Int. J. Energy Res. 32, 356–366 (2008)

    Article  Google Scholar 

  12. Zhiqiang, L., Xiaolin, L., Hanqing, W., Wangming, P.: Performance comparison of air source heat pump with R407C and R22 under frosting and defrosting. Energy Convers. Manag. 49, 232–239 (2008)

    Article  Google Scholar 

  13. Zali, S., Hashemi, R., Naggaashzagadan, M.: Performance comparison of R407C and R22 in off-design point using Wilson-Plot Method. Middle-East J. Sci. Res. 9, 177–183 (2011)

    Google Scholar 

  14. Neksa, P., Rekstad, H., Zakeri, G.R., Schiefloe, P.A.: CO2-heat pump water heater: characteristics, system design and experimental results. Int. J. Refrig. 21(3), 172–179 (1998)

    Article  Google Scholar 

  15. Li, X.: Experimental study on replacement of R22 with R417A in heat pump heating water system. Refrig. J. 4, 1–3 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazi, J.R., Agrawal, N. (2020). Experimental Investigation of Dehumidifier Hybrid Air Conditioner Integrated Zeotropic Refrigerant Blend R-407C Air Source Water Heat Pump. In: Deb, D., Dixit, A., Chandra, L. (eds) Renewable Energy and Climate Change. Smart Innovation, Systems and Technologies, vol 161. Springer, Singapore. https://doi.org/10.1007/978-981-32-9578-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9578-0_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9577-3

  • Online ISBN: 978-981-32-9578-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics