Skip to main content

Ecosystem Health and Dynamics: An Indicator of Global Climate Change

  • Chapter
  • First Online:
Contemporary Environmental Issues and Challenges in Era of Climate Change

Abstract

Climate change is perhaps one of the major critical problems of recent times. It has become a subject of international concern since its increase at an alarming speed. Although atmospheric gases, surface solar radiations, volcanic activity, cosmic rays and alterations in earth’s orbit are targeted as the potential causes of climate change, their consequences or impacts are not well documented. Sea level rise, flooding, extreme weather patterns, heat waves and drought are some of the pronounced consequences of climate change. Changes in biodiversity, ecosystem and ecosystem services and health caused by climate change have received minimal attention. A healthy ecosystem requires a wide diversity of microorganisms, plants and animals at different trophic levels. Removal of a single species from the niche or introduction of an invasive species might lead to ecosystem destruction. Abnormal changes in the climate pattern can alter the ecosystem health through loss of species, extinction of species, migration of species and changes in behavioural pattern. However, these changes are invisible till a species get extinct or endangered. Further the change in ecosystem health due to alterations in climate is difficult to record unlike other impacts. Sustainable practices that can reduce, sequester or capture the greenhouse gas emissions may halt the biodiversity loss, protect the ecosystem from further destruction and restore them. This chapter comprehensively describes the impacts of climate change on the health of various aquatic and terrestrial ecosystems. The detrimental effects, short- and long-term responses like changes in physiology, phenology and life cycle of organisms, loss of productivity and loss or migration of species have also been elaborated in detail for every single ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Chang Biol 12(4):652–661

    Article  Google Scholar 

  • Agardy T, Alder J (2005) Coastal systems. In: Hassan R et al (eds) Ecosystems and human well-being: current state and trends, volume 1. Findings of the condition and trends working group of the millennium ecosystem assessment. Millennium ecosystem assessment series 1, pp 513–549

    Google Scholar 

  • Al Zawad FM, Aksakal A (2010) Impacts of climate change on water resources in Saudi Arabia. In: Dincer I, Hepbasil A, Midilli A, Karakoc T (eds) Global warming. Green energy and technology, Boston, pp 511–523. https://doi.org/10.1007/978-1-4419-1017-2_33

    Google Scholar 

  • Andren E, Andren T, Kunzendorf H (2000) Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. The Holocene 10(6):687–702

    Article  Google Scholar 

  • Anon (1996) Andaman & Nicobar Islands. In: Basic statistics 1995. Statistical bureau. Andaman and Nicobar Administration, Port Blair. (v) + 341 pp; 8 folding tables

    Google Scholar 

  • Ashrafzadeh MR, Khosravi R, Ahmadi M, Kaboli M (2018) Landscape heterogeneity and ecological niche isolation shape the distribution of spatial genetic variation in Iranian brown bears, Ursus arctos (Carnivora: Ursidae). Mamm Biol 93:64–75. https://doi.org/10.1016/J.MAMBIO.2018.08.007

    Article  Google Scholar 

  • Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K, Finney BP (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36(3):295

    Article  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob Chang Biol 10(7):1043–1052

    Article  Google Scholar 

  • Benke AC (1993) Concepts and patterns of invertebrate production in running waters. Int Ver Theor Angew Limnol 25(1):15–38

    Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135(1):126–146. https://doi.org/10.3159/07-RP-035R.1

    Article  Google Scholar 

  • Boulton CA, Good P, Lenton TM (2013) Early warning signals of simulated Amazon rainforest dieback. Theor Ecol-Neth 6(3):373–384. https://doi.org/10.1007/s12080-013-0191-7

    Article  Google Scholar 

  • Boulton AJ, Ekebom J, Gislason GM (2016) Integrating ecosystem services into conservation strategies for freshwater and marine habitats: a review. Aquat Conserv 26(5):963–985

    Article  Google Scholar 

  • Bridgham SD, Ping CL, Richardson JL, Updegraff K (2000) Soils of northern peatlands: Histosols and Gelisols. In: Richardson JL, Vepraskas MJ (eds) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. CRC Press, Boca Raton, pp 343–370

    Google Scholar 

  • Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C (2006) The carbon balance of North American wetlands. Wetlands 26(4):889–916

    Article  Google Scholar 

  • Bridgham SD, Pastor J, Dewey B, Weltzin JF, Updegraff K (2008) Rapid carbon response of peatlands to climate change. Ecology 89(11):3041–3048

    Article  Google Scholar 

  • Briggs J, Large DJ, Snape C, Drage T, Whittles D, Cooper M, Macquaker JHS, Spiro BF (2007) Influence of climate and hydrology on carbon in an early Miocene peatland. Earth Planet Sci Lett 253(3–4):445–454

    Article  CAS  Google Scholar 

  • Brunel T, Boucher J (2007) Long-term trends in fish recruitment in the North-East Atlantic related to climate change. Fish Oceanogr 16(4):336–349

    Article  Google Scholar 

  • Burns JHR, Delparte D, Kapono L, Belt M, Gates RD, Takabayashi M (2016) Assessing the impact of acute disturbances on the structure and composition of a coral community using innovative 3D reconstruction techniques. Methods Oceanogr 15:49–59

    Article  Google Scholar 

  • Butt N, Seabrook L, Maron M, Law BS, Dawson TP, Syktus J, McAlpine CA (2015) Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob Chang Biol 21(9):3267–3277. https://doi.org/10.1111/gcb.12869

    Article  Google Scholar 

  • Cayuela H, Valenzuela-Sanchez A, Teulier L, Martínez-Solano Í, Léna JP, Merilä J, Cox N (2018) Determinants and consequences of dispersal in vertebrates with complex life cycles: a review of pond-breeding amphibians. Peer J Preprints 6:e27394v1. https://doi.org/10.7287/peerj.preprints.27394v1

    Article  Google Scholar 

  • Cesar H, Burke L, Pet-Soede L (2003) The economics of worldwide coral reef degradation. Cesar environmental economics consulting (CEEC). Netherlands

    Google Scholar 

  • Chiabai A, Quiroga S, Martinez-Juarez P, Higgins S, Taylor T (2018) The nexus between climate change, ecosystem services and human health: towards a conceptual framework. Sci Total Environ 635:1191–1204

    Article  CAS  Google Scholar 

  • Coats R, Perez-Losada J, Schladow G, Richards R, Goldman CR (2006) Lake Tahoe is getting warmer. WMC Networker Spring, pp 17–21

    Google Scholar 

  • Cushing DH (1995) Population production and regulation in the sea: a fisheries perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Darling ES, Graham N, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36(2):561–575

    Article  Google Scholar 

  • Deb JC, Phinn S, Butt N, McAlpine CA (2017) The impact of climate change on the distribution of two threatened dipterocarp trees. Ecol Evol 7(7):2238–2248. https://doi.org/10.1002/ece3.2846

    Article  Google Scholar 

  • Deb JC, Phinn S, Butt N, McAlpine CA (2018) Climate change impacts on tropical forests: identifying risks for tropical Asia. J Trop For Sci 30(2):182–194. https://doi.org/10.26525/jtfs2018.30.2.182194

    Article  Google Scholar 

  • Dell’Apa A, Carney K, Davenport TM, Carle MV (2018) Potential medium-term impacts of climate change on tuna and billfish in the Gulf of Mexico: a qualitative framework for management and conservation. Mar Environ Res 141:1–11. https://doi.org/10.1016/j.marenvres.2018.07.017

    Article  CAS  Google Scholar 

  • Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4

    Article  Google Scholar 

  • Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob Chang Biol 17(2):990–996. https://doi.org/10.1111/j.1365-2486.2010.02266.x

    Article  Google Scholar 

  • Dobiesz NE, Lester NP (2009) Changes in mid-summer water temperature and clarity across the Great Lakes between 1968 and 2002. J Great Lakes Res 35(3):371–384

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Duffy J, Barry JP, Chan F, English CA, Polovina J (2011) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37

    Article  Google Scholar 

  • Drexler JZ, de Fontaine CS, Deverel SJ (2009) The legacy of wetland drainage on the remaining peat in the Sacramento—San Joaquin Delta, California, USA. Wetlands 29(1):372–386

    Article  Google Scholar 

  • Dukes JS, Mooney HA (2004) Disruption of ecosystem processes in western North America by invasive species. Rev Chil Hist Nat 77(3):411–437

    Article  Google Scholar 

  • Edlund M, Almendinger J, Fang X, Hobbs J, VanderMeulen D, Key R, Engstrom D (2017) Effects of climate change on lake thermal structure and biotic response in northern wilderness lakes. Water 9(9):678

    Article  CAS  Google Scholar 

  • Else M, Atkinson C (2010) Climate change impacts on UK top and soft fruit production. Outlook Agr 39(4):257–262. https://doi.org/10.5367/oa.2010.0014

    Article  Google Scholar 

  • Engler R, Le Lay G, Randin CF, Sebastià MT, Dirnböck T, Nogués-Bravo D, Zimmermann NE (2010) 21st century climate change threatens mountain flora unequally across Europe. Glob Chang Biol 17(7):2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x

    Article  Google Scholar 

  • Erez A, Fishman S, Linsley-Noakes GC, Allan P (1990) The dynamic model for rest completion in peach buds. Acta Hortic 276:165–174. https://doi.org/10.17660/ActaHortic.1990.276.18

    Article  Google Scholar 

  • Eva HD, Mayaux P, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem Cy 18(1):1–12. https://doi.org/10.1029/2003GB002142

    Article  CAS  Google Scholar 

  • Ferrati R, Canziani GA, Moreno DR (2005) Esteros del Ibera: hydrometeorological and hydrological characterization. Ecol Model 186(1):3–15

    Article  Google Scholar 

  • Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fisher 17(4):581–613

    Article  Google Scholar 

  • Ficker H, Luger M, Gassner H (2017) From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw Biol 62(8):1335–1345

    Article  CAS  Google Scholar 

  • Field CB, Lobell DB, Peters HA, Chiariello NR (2007) Feedbacks of terrestrial ecosystems to climate change. Annu Rev Environ Resour 32:1–29. https://doi.org/10.1146/annurev.energy.32.053006.141119

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Zeng AN (2006) Climate-carbon cycle feedback analysis: results from the C 4 MIP model Intercomparison. J Clim 19:3337–3353. Retrieved from https://journals.ametsoc.org/doi/pdf/10.1175/JCLI3800.1

    Article  Google Scholar 

  • Galil BS (2007) Loss or gain? Invasive aliens and biodiversity in the Mediterranean Sea. Mar Pollut Bull 55(7–9):314–322

    Article  CAS  Google Scholar 

  • Garpe KC, Yahya SA, Lindahl U, Öhman MC (2006) Long-term effects of the 1998 coral bleaching event on reef fish assemblages. Mar Ecol Prog Ser 315:237–247

    Article  Google Scholar 

  • Graham P, Thoumi, G, Drazen E, Seymour F (2018) Mining global financial data to increase transparency and reduce drivers of deforestation ending tropical deforestation: a stock-take of progress and challenges. Washington DC Retrieved from https://wriorg.s3.amazonaws.com/s3fs-public/ending-tropical-deforestation-mining-global-financial-data.pdf?_ga=2.217538718.968617535.1552385249-908872217.1552385249

  • Grizzetti B, Lanzanova D, Liquete C, Reynaud A, Cardoso AC (2016) Assessing water ecosystem services for water resource management. Environ Sci Pol 61:194–203

    Article  Google Scholar 

  • Gunkel G, Lima D, Selge F, Sobral M, Calado S (2015) Aquatic ecosystem services of reservoirs in semiarid areas: sustainability and reservoir management. WIT Trans Ecol Environ 197:187–200

    Article  Google Scholar 

  • Hansen MC, Potapov R, Moore M, Hancher SA, Turubanova A, Tyukavina D, Thau SV, Stehman SJ, Goetz TR, Loveland A, Kommareddy A, Egorov LC, Justice JRGT (2013) High-resolution global maps of 21st-century Forest cover change. Proc Natl Acad Sci U.S.A 342:1017–1018. https://doi.org/10.1126/science.1239552

    Article  CAS  Google Scholar 

  • Helfer F, Lemckert C, Zhang H (2012) Impacts of climate change on temperature and evaporation from a large reservoir in Australia. J Hydrol 475:365–378

    Article  Google Scholar 

  • Hengeveld H (2000) Projections for Canada’s climate future: a discussion of recent simulations with the Canadian global climate model. Environment Canada, Meterological Service of Canada, Atmospheric & Climate Science Directorate, Science Assessment & Integration Branch. Enquiry Centre Environment Ottawa, Canada

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world's coral reefs. Mar Freshw Res 50(8):839–866

    Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wosten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514

    Article  CAS  Google Scholar 

  • Howard R, Bell I, Pike DA (2014) Thermal tolerances of sea turtle embryos: current understanding and future directions. Endanger Species Res 26(1):75–86. https://www.theguardian.com/environment/2014/jan/28/warmer-seas-are-making-fish-smaller-water-temperatures

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough M, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933

    Article  CAS  Google Scholar 

  • IPCC (2001 November) Climate change 2001: the scientific basis. Summary for policymakers. Sciences, New York, p 881. Retrieved from http://www.metoffice.gov.uk

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, New York, p 987. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf

    Google Scholar 

  • Jain S, Sharma G, Mathur YP (2013) Effects of temperature variations on fish in lakes. Int J Adv Res Technol 2(10):2516–2523

    Google Scholar 

  • Jones M (1997) The impacts of global climate change on grassland ecosystems. In: Proceedings of the international grasslands congress 18th Winnipeg MB. Retrieved from http://www.internationalgrasslands.org/files/igc/publications/1997/iii-181.pdf

  • Joosten H (2009) The global peatland CO2 picture: peatland status and drainage related emissions in all countries of the world. The global peatland CO2 picture: peatland status and drainage related emissions in all countries of the world. Greifswald University

    Google Scholar 

  • Kamerath M, Chandra S, Allen BC (2008) Distribution and impacts of warm water invasive fish in Lake Tahoe, USA. Aquat Invasions 3(1):35–41

    Article  Google Scholar 

  • Karlson K (2002) Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters-a review. Oceanogr Mar Biol Ann Rev 40:427–489

    Google Scholar 

  • Lamadrid-Rose Y, Boehlert GW (1988) Effects of cold shock on egg, larval, and juvenile stages of tropical fishes: potential impacts of ocean thermal energy conversion. Mar Environ Res 25(3):175–193. https://doi.org/10.1016/0141-1136(88)90002-5

    Article  Google Scholar 

  • Lindahl ULF, Öhman MC, Schelten CK (2001) The 1997/1998 mass mortality of corals: effects on fish communities on a Tanzanian coral reef. Mar Pollut Bull 42(2):127–131

    Article  CAS  Google Scholar 

  • Llorens JLP (2008) Impacts of climate change on wetland ecosystems. Water Supply 7(2.117):8

    Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cy 1(1):61–86

    Article  CAS  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability. In: Chapter 3, developing and applying scenarios. ISBN 0 521 80768 9

    Google Scholar 

  • McFadden L, Nicholls RJ, Penning-Rowsell E (2007) Managing coastal vulnerability. Impact Assessment and Project Appraisal 26

    Google Scholar 

  • McNaughton SJ (2014) Terrestrial ecosystem. Access Science https://doi.org/10.1036/1097-8542.685500

  • Meinesz A (2001) Killer algae. University of Chicago Press, Chicago

    Google Scholar 

  • Meybeck M (1995) Global distribution of lakes. In: Physics and chemistry of lakes. Springer, Berlin/Heidelberg, pp 1–35

    Google Scholar 

  • Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Williamson P, Hardman-Mountford NJ, Southward AJ (2006) Changes in the range of some common rocky shore species in Britain—a response to climate change? In: Marine biodiversity. Springer, Dordrecht, pp 241–251

    Chapter  Google Scholar 

  • Mirkhani V, Tangestaninejad S, Moghadam M, Habibi MH (2009) Iranian chemical society photocatalytic degradation of azo dyes catalyzed by ag doped TiO 2 Photocatalyst. J Iran Chem Soc 6(3):578–587. Retrieved from https://link.springer.com/content/pdf/10.1007/BF03246537.pdf

    Article  CAS  Google Scholar 

  • Mitsch WJ, Nahli A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manag 18(5):573–586

    Article  CAS  Google Scholar 

  • Moutinho P, Schwartzman S (2005) Tropical deforestation and climate change. Washington DC – USA. Retrieved from https://www.edf.org/sites/default/files/4930_TropicalDeforestation and_ClimateChange.pdf

  • Mrosovsky N (1988) Pivotal temperatures for loggerhead turtles (Caretta caretta) from northern and southern nesting beaches. Can J Zool 66(3):661–669

    Article  Google Scholar 

  • Newson SE, Mendes S, Crick HQ, Dulvy NK, Houghton JD, Hays GC, Hutson AM, MacLeod CD, Pierce GJ, Robinson RA (2009) Indicators of the impact of climate change on migratory species. Endanger Species Res 7(2):101–113

    Article  Google Scholar 

  • Norby RJ, Delucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity, vol 102. Retrieved from www.pnas.orgcgi. https://doi.org/10.1073pnas.0509478102

  • Nyman M, Korhola A, Brooks SJ (2005) The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes. Glob Ecol Biogeogr 14(2):137–153

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278(5341):1251–1256

    Article  CAS  Google Scholar 

  • Paerl HW, Richards RC, Leonard RL, Goldman CR (1975) Seasonal nitrate cycling as evidence for complete vertical mixing in Lake Tahoe, California-Nevada1. Limnol Oceanogr 20(1):1–8

    Article  CAS  Google Scholar 

  • Page SE, Baird AJ (2016) Peatlands and global change: response and resilience. Annu Rev Environ Resour 41:35–57

    Article  Google Scholar 

  • Patalas K (1990) Diversity of the zooplankton communities in Canadian lakes as a function of climate. Verh – Int Ver Theor Angew Limnol 24(1):360–368

    Google Scholar 

  • Planque B, Frédou T (1999) Temperature and the recruitment of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 56(11):2069–2077

    Article  Google Scholar 

  • Polovina JJ (1996) Decadal variation in the trans-Pacific migration of northern bluefin tuna (Thunnus thynnus) coherent with climate-induced change in prey abundance. Fish Oceanogr 5(2):114–119

    Article  Google Scholar 

  • Portner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808):95–97

    Article  CAS  Google Scholar 

  • Prince ED, Goodyear CP (2006) Hypoxia-based habitat compression of tropical pelagic fishes. Fish Oceanogr 15(6):451–464. https://doi.org/10.1111/j.1365-2419.2005.00393.x

    Article  Google Scholar 

  • Rathore P, Roy A, Karnatak H (2019) Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol Indic 102:199–207. https://doi.org/10.1016/J.ECOLIND.2019.02.020

    Article  Google Scholar 

  • Raup DM, Sepkoski JJ (1982) Mass extinctions in the marine fossil record. Science 215(4539):1501–1503

    Article  CAS  Google Scholar 

  • Rempfer J, Livingstone DM, Blodau C, Forster R, Niederhauser P, Kipfer R (2010) The effect of the exceptionally mild European winter of 2006-2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future? Limnol Oceanogr 55(5):2170–2180

    Article  CAS  Google Scholar 

  • Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14(2):251–275

    Article  Google Scholar 

  • Rooker JR, Simms JR, Wells RJD, Holt SA, Holt GJ, Graves JE, Furey NB (2012) Distribution and habitat associations of billfish and swordfish larvae across mesoscale features in the Gulf of Mexico. PLoS One 7(4):e34180. https://doi.org/10.1371/journal.pone.0034180

    Article  CAS  Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14(11):2740–2754

    Google Scholar 

  • Rustad L, Campbell J, Dukes JS, Huntington T, Lambert KF, Mohan J, Rodenhouse N (2012) Changing climate, changing forests: the impacts of climate change on forests of the Northeastern United States and Eastern Canada. Retrieved from http://www.nrs.fs.fed.us/

  • Rypel AL (2009) Climate–growth relationships for largemouth bass (Micropterus salmoides) across three southeastern USA states. Ecol Freshw 18(4):620–628

    Article  Google Scholar 

  • Sahoo GB, Forrest AL, Schladow SG, Reuter JE, Coats R, Dettinger M (2016) Climate change impacts on lake thermal dynamics and ecosystem vulnerabilities. Limnol Oceanogr 61(2):496–507

    Article  Google Scholar 

  • Saros JE, Stone JR, Pederson GT, Slemmons KE, Spanbauer T, Schliep A, Cahl D, Williamson CE, Engstrom DR (2012) Climate-induced changes in lake ecosystem structure inferred from coupled neo-and paleoecological approaches. Ecology 93(10):2155–2164

    Article  Google Scholar 

  • Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett V, Cayan DR, Fogarty M, Harwell MA, Howarth RW, Mason C, Reed DJ, Royer TC, Sallenger AH, Titus JG (2002) Climate change impacts on US coastal and marine ecosystems. Estuaries 25(2):149–164

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(6972):332

    Article  CAS  Google Scholar 

  • Schindler DW, Beaty KG, Fee EJ, Cruikshank DR, DeBruyn ER, Findlay DL, Linsey GA, Shearer JA, Stainton MP, Turner MA (1990) Effects of climatic warming on lakes of the central boreal forest. Science 250(4983):967–970

    Article  CAS  Google Scholar 

  • Schmittner A, Galbraith ED (2008) Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456(7220):373

    Article  CAS  Google Scholar 

  • Shindell D, Bréon F, Collins W, Fuglestvedt J, Huang J, Koch D, Midgley P (2013) Anthropogenic and natural radiative Forc-ing. In: Climate change 2013: the physical science basis. Contribution of working group I. Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf

  • Smith TM, Leemans R, Shugart HH (1992) Sensitivity of terrestrial carbon storage to CO2-induced climate change: comparison of four scenarios based on general circulation models. Clim Chang 21(4):367–384. https://doi.org/10.1007/BF00141377

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Henry MMBT, Chen Z (2007) Fourth assessment report of the intergovernmental panel on climate change. The physical science basis. Retrieved from http://bluemarble.nasa.gov

  • Sorvari S, Korhola A (1998) Recent diatom assemblage changes in subarctic Lake Saanajärvi, NW Finnish Lapland, and their paleoenvironmental implications. J Paleolimnol 20(3):205–215

    Article  Google Scholar 

  • Soutar A, Isaacs JD (1974) Abundance of pelagic fish during the 19th and 20th centuries as recorded in anaerobic sediment off the Californias. FISH B-NOAA 72(2):257–273

    Google Scholar 

  • Southward AJ, Hawkins SJ, Burrows MT (1995) Seventy years' observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J Therm Biol 20(1–2):127–155

    Article  Google Scholar 

  • Spalding MD, Jarvis GE (2002) The impact of the 1998 coral mortality on reef fish communities in the Seychelles. Mar Pollut Bull 44(4):309–321

    Article  CAS  Google Scholar 

  • Sutton WB, Barrett K, Moody AT, Loftin CS, Demaynadier PG, Nanjappa P (2015) Predicted changes in climatic niche and climate Refugia of conservation priority salamander species in the northeastern United States. Forest 6:1–26. https://doi.org/10.3390/f6010001

    Article  Google Scholar 

  • Talloni-Álvarez NE, Sumaila UR, Le Billon P, Cheung WWL (2019) Climate change impact on Canada’s Pacific marine ecosystem: the current state of knowledge. Mar Policy 104:163–176. https://doi.org/10.1016/J.MARPOL.2019.02.035

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2013) Earth’s future an apparent hiatus in global warming? ESS 1(1):19–32

    Google Scholar 

  • Vander Zanden MJ, Chandra S, Allen BC, Reuter JE, Goldman CR (2003) Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California–Nevada) basin. Ecosystems 6(3):274–288

    Article  Google Scholar 

  • Verlaque M, Afonso-Carrillo J, Gil-Rodriguez MC, Durand C, Boudouresque CF, Le Parco Y (2004) Blitzkrieg in a marine invasion: Caulerpa racemosa var. cylindracea (Bryopsidales, Chlorophyta) reaches the Canary Islands (North-East Atlantic). Biol Invasions 6(3):269–281

    Article  Google Scholar 

  • Vermeij GJ (2004) Ecological avalanches and the two kinds of extinction. Evol Ecol Res 6(3):315–337

    Google Scholar 

  • Vittoz P, Dussex N, Wassef J, Guisan A (2009) Diaspore traits discriminate good from weak colonisers on high-elevation summits. Basic Appl Ecol 10(6):508–515. https://doi.org/10.1016/J.BAAE.2009.02.001

    Article  Google Scholar 

  • Weckström J, Korhola A (2001) Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. J Biogeogr 28(1):31–45

    Article  Google Scholar 

  • Wieder RK (2000) Empirical modeling of present and future carbon balance of Sphagnum peatlands. In: Proceeding of the 11th international peat congress, Quebec City, August 2000, vol 2

    Google Scholar 

  • Wilms TM, Wagner P, Shobrak M, Lutzmann N, Böhme W (2010) Aspects of the ecology of the Arabian spiny-tailed lizard (Uromastyx aegyptia microlepis BLANFORD, 1875) at Mahazat as-Sayd protected area, Saudi Arabia. Salamandra 46(3):131–140

    Google Scholar 

  • Winder M, Schindler DE (2004a) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecol 85(8):2100–2106

    Article  Google Scholar 

  • Winder M, Schindler DE (2004b) Climatic effects on the phenology of lake processes. Glob Chang Biol 10(11):1844–1856

    Article  Google Scholar 

  • Yntema CL, Mrosovsky N (1982) Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Can J Zool 60(5):1012–1016

    Article  Google Scholar 

  • Zhang Z, Xu S, Capinha C, Weterings R, Gao T (2019) Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecol Indic 104:333–340. https://doi.org/10.1016/J.ECOLIND.2019.05.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Yogalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, G., Kaur, J., Kumar, A., Yogalakshmi, K.N. (2020). Ecosystem Health and Dynamics: An Indicator of Global Climate Change. In: Singh, P., Singh, R., Srivastava, V. (eds) Contemporary Environmental Issues and Challenges in Era of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-32-9595-7_1

Download citation

Publish with us

Policies and ethics