Skip to main content

Molecular Dynamics of Co-signal Molecules in T-Cell Activation

  • Chapter
  • First Online:
Co-signal Molecules in T Cell Activation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1189))

Abstract

T-cell activation is induced through the TCR microcluster (TCR-MC), which is generated by dynamically recruiting the TCR, kinases, and adaptors to trigger the full activation signal. Co-stimulation receptors also accumulate, mostly at the TCR-MC, and induce signals that positively and negatively modulate the direction and magnitude of T-cell activation. CD28 initially colocalizes with the TCR-MC but then migrates to a distinct region of the cSMAC called the signaling cSMAC, where it recruits and associates with PKCθ, CARMA1, and Rltpr to induce sustained co-stimulation signals leading to NF-kB activation. Although CTLA-4 and PD-1 mediate inhibitory functions in T-cell activation, their molecular dynamics are quite different. Both are expressed only after activation, when they function as feedback inhibition of T-cell activation. Whereas PD-1 initially accumulates in the TCR-MC and then moves to the cSMAC, CTLA-4 directly accumulates at the cSMAC. PD-1 inhibits activation by inducing dephosphorylation of TCR-upstream signaling molecules by transiently recruiting SHP2, whereas CTLA-4 competes with CD28 for CD80/86 binding within the signaling cSMAC. In general, for both positive and negative co-stimulation, these co-stimulation receptors are also clustered in a ligand-dependent fashion, and their colocalization with the TCR-MC is required to mediate co-stimulation signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguado E, Richelme S, Nuñez-Cruz S, Miazek A, Mura AM, Richelme M, Guo XJ, Sainty D, He HT, Malissen B, Malissen M (2002) Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296:2036–2040

    Article  CAS  PubMed  Google Scholar 

  • Au-Yeung BB, Deindl S, Hwu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A (2009 Mar) The structure, regulation and function of ZAP-70. Immunol Rev 228:41–57

    Article  CAS  PubMed  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    Article  CAS  PubMed  Google Scholar 

  • Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Bar VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158:1263–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunnell SC, Singer AL, Hong DI, Jacque BH, Jordan MS, Seminario MC, Barr VA, Koretzky GA, Samelson LE (2006) Persistence of cooperatively stabilized signaling clusters derives T-cell activation. Mol Cell Biol 26:7155–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322

    Article  CAS  PubMed  Google Scholar 

  • Egan JG, Allison JP (2002) Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16:23–35

    Article  Google Scholar 

  • Fos C, Salles A, Lang V, Carrette F, Audebert S, Pastor S, Ghiotto M, Olive D, Bismuth G, Nunès JA (2008) ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J Immunol 181:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Saito T (2009) CARD9 vs. CARMA1 in innate and adaptive immunities. Trends Immunol 30:234–242

    Article  CAS  PubMed  Google Scholar 

  • Hara H, Yokosuka T, Hirakawa H, Ishihara C, Yasukawa S, Yamazaki M, Koseki H, Yoshida H, Saito T (2015) Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-kB signaling. Nat Commun 6:5555

    Article  CAS  PubMed  Google Scholar 

  • Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K, Toma H, Altman A, Abe R (2003) A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 197:257–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP (1992) CD28-mediated signaling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356:607–609

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, Saito T (2016) Micro adhesion-ring surrounding TCR microclusters are essential for T cell activation. J Exp Med 213:1609–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Ohno H, Nakaseko C, Sakuma M, Takeda-Ezaki M, Arase H, Kominami E, Fujisawa T, Saito T (2000) Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4-containing lysosomes upon activation of CD4+ T cells. J Immunol 165:5062–5068

    Article  CAS  PubMed  Google Scholar 

  • Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4:110–116

    Article  CAS  PubMed  Google Scholar 

  • Krummel MF, Sjaastad MD, Wulfin D, Davis MM (2000) Differential clustering of CD4 and CD3zeta during T cell recognition. Science 289:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Dinner AR, Tu C, Campi F, Rachaudhuri S, Verma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK, Shaw AS (2003) The immunological synapse balances T cell receptor signaling and degradation. Science 302:1218–1222

    Article  CAS  PubMed  Google Scholar 

  • Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wülfing C, Malissen B, Malissen M (2013) The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14:858–866

    Article  CAS  PubMed  Google Scholar 

  • Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4:535–543

    Article  CAS  PubMed  Google Scholar 

  • Lui Y, Davis SJ (2018) LAG-3: a very singular immune checkpoint. Nat Immunol 19:1278–1279

    Article  CAS  PubMed  Google Scholar 

  • Monks CR, Freiburg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395:82–86

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Ohashi PS (2015) Clinical blockage of PD1 and LAG3 – potential mechanisms of action. Nat Rev Immunol 15:45–56

    Article  CAS  PubMed  Google Scholar 

  • Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  CAS  PubMed  Google Scholar 

  • Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98:13866–13871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T cell signaling. Nature 369:327–329

    Article  CAS  PubMed  Google Scholar 

  • Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE (1995) p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol-3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T cell costimulation. Proc Natl Acad Sci U S A 92:8891–8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roncagalli R, Cucchetti M, Jarmuzynski N, Grégoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213:2437–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudd CE, Schneider H (2003) Unifying concepts in CD28, ICOS and CTLA4 co-receptor signaling. Nat Rev Immunol 3:544–556

    Article  CAS  PubMed  Google Scholar 

  • Saito T (1998) Negative regulation of T cell activation. Curr Opin Immunol 10:313–321

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Yokosuka T, Hashimoto-Tane A (2010) Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett 584:4865–4871

    Article  CAS  PubMed  Google Scholar 

  • Samelson LE (2002) Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol 20:371–394

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RH (2003) T cell anergy. Annu Rev Immunol 21:305–334

    Article  CAS  PubMed  Google Scholar 

  • Sharpe AH, Freeman GJ (2002) The B7-CD28 superfamily. Nat Rev Immunol 2:116–126

    Article  CAS  PubMed  Google Scholar 

  • Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifatino JS, Saito T (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6:583–589

    Article  CAS  PubMed  Google Scholar 

  • Sommers CL, Park CS, Lee J, Feng C, Fuller CL, Grinberg A, Hildebrand JA, Lacaná E, Menon RK, Shores EW, Samelson LE, Love PE (2002) A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296:2040–2043

    Article  CAS  PubMed  Google Scholar 

  • Thome M (2004) CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 4:348–359

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T (1990) LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med 171:1393–1405

    Article  CAS  PubMed  Google Scholar 

  • Villalba M, Coudronniere N, Deckert M, Teixeiro E, Mas P, Altman A (2000) A novel functional interaction between Vav and PKCtheta is required for TCR-induced T cell activation. Immunity 12:151–160

    Article  CAS  PubMed  Google Scholar 

  • Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K et al (2006) Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-medaited costimulation. J Immunol 177:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  CAS  PubMed  Google Scholar 

  • Yokosuka T, Saito T (2010) The immunological synapse, TCR microclusters, and T cell activation. Curr Top Microbiol Immunol 340:81–108

    CAS  PubMed  Google Scholar 

  • Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin M, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase c-θ translocation. Immunity 29:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokosuka T, Kobayashi W, Takamatsu M, Sakata-Sogawa K, Zeng H, Yagita H, Takunaga M, Saito T (2010) Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33:1–14

    Article  CAS  Google Scholar 

  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Allison JP (1997) Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci U S A 94:9273–9278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank M.L. Dustin, M. Tokunaga, H. Yagita, M. Azuma, and T. Honjo for the collaboration; T. Yokosuka and A. Hashimoto-Tane for the main study; W. Kobayashi, M. Takamatsu, M. Sakuma, and M. Unno for the technical help; and M. Yoshioka and H. Yamaguchi for the secretarial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saito, T. (2019). Molecular Dynamics of Co-signal Molecules in T-Cell Activation. In: Azuma, M., Yagita, H. (eds) Co-signal Molecules in T Cell Activation. Advances in Experimental Medicine and Biology, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-32-9717-3_5

Download citation

Publish with us

Policies and ethics