Skip to main content

Modelling of Ductile Mode Cutting

  • Chapter
  • First Online:
Ductile Mode Cutting of Brittle Materials

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 659 Accesses

Abstract

Although the demand for industrial applications for brittle material growing rapidly, the manufacturing of brittle material for making precise components is very challenging due to its poor machinability and brittleness. In this chapter, theoretical analyses are given based on brittle material’s mechanical properties as the functions of temperature and on critical conditions for ductile mode chip formation in cutting of brittle material. An energy model for ductile mode chip formation in cutting of brittle material is developed, in which critical undeformed chip thickness for ductile chip formation in cutting of brittle material is predicted from material’s mechanical properties, or tool geometry and cutting conditions used. Experiments are conducted on conventional grooving of tungsten carbide material to verify the proposed model for predicting critical undeformed chip thickness, which shows a substantial agreement between the predicted value and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu K (2002) Ductile cutting for rapid prototyping of tungsten carbide tools. NUS Ph.D. thesis. Singapore

    Google Scholar 

  2. Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker, New York

    Google Scholar 

  3. Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Proc Tech 113:348–354

    Article  Google Scholar 

  4. Liu K, Li XP (2001) Modelling of ductile cutting of tungsten carbide. T NAMRI/SME 29:251–258

    Google Scholar 

  5. Kuhn H, Medlin D (1988) ASM handbook V 8. ASM International Materials Park, Novelty

    Google Scholar 

  6. Lee M (1983) High temperature hardness of tungsten carbide. Metall Trans A Phys Meta Mater Sci 14:1625–1629

    Article  Google Scholar 

  7. Schaller R, Ammann JJ, Bonjour C (1988) Internal friction in WC-Co hard metals. Mater Sci Eng A105(106):313–321

    Article  Google Scholar 

  8. Raghunathan S, Caron R, Freiderichs J et al (1996) Tungsten carbide technologies. Adv Mater Proc 149:21–23

    Google Scholar 

  9. Milman YV, Chugunova S, Goncharuck V et al (1997) Low and high temperature hardness of WC-6 wt%Co alloys. Int J Refract Metal Hard Mater 15:97–101

    Article  Google Scholar 

  10. Milman YV, Luyckx S, Northrop IT (1999) Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys. Int J Refract Metal Hard Mater 17:39–44

    Article  Google Scholar 

  11. Acchar W, Gomes UU, Kaysser WA (1999) Strength degradation of a tungsten carbide-cobalt composite at elevated temperatures. Mater Charac 43:27–32

    Article  Google Scholar 

  12. Uygur ME (1997) Modelling tungsten carbide/cobalt composites. Adv Mater Proc 151:35–36

    Google Scholar 

  13. Bolton JD, Keely RJ (1983) Fracture toughness (Kic) of cemented carbides. Fib Sci Tech 19:37–56

    Article  Google Scholar 

  14. Shetty DK, Wright IG, Mincer PN et al (1985) Indentation fracture of WC-Co cermets. J Mater Sci 20:1873–1882

    Article  Google Scholar 

  15. Han D, Mecholsky JJ (1990) Fracture analysis of cobalt-bonded tungsten carbide composites. J Mater Sci 25:4949–4956

    Article  Google Scholar 

  16. James MN, Human AM, Luyckx S (1990) Fracture toughness testing of hard metals using compression-compression precracking. J Mater Sci 25:4810–4814

    Article  Google Scholar 

  17. Schubert WD, Neumeister H, Kinger G et al (1998) Hardness to toughness relationship of fine-grained WC-Co hardmetals. Int J Refract Metal Hard Mater 16:133–142

    Article  Google Scholar 

  18. Laugier MT (1987) Palmqvist toughness in WC-Co composites viewed as a ductile/brittle transition. J Mater Sci L 6:768–770

    Article  Google Scholar 

  19. Laugier MT (1987) Comparison of toughness in WC-Co determination by a compact tensile technique with model predictions. J Mater Sci Lett 6:779–780

    Article  Google Scholar 

  20. Laugier MT (1987) Hertzian indentation of ultra-fine grain size WC-Co composites. J Mater Sci Lett 6:841–843

    Article  Google Scholar 

  21. Laugier MT (1987) Palmqvist indentation toughness in WC-Co composites. J Mater Sci Lett 6:897–900

    Article  Google Scholar 

  22. Laugier MT (1988) Elevated temperature properties of WC-Co cemented carbides. Mater Sci Eng A 105(106):363–367

    Article  Google Scholar 

  23. Laugier MT (1989) Validation of the Palmqvist indentation approach to toughness determination in WC-Co composites. Cera I 15:121–125

    Google Scholar 

  24. Laugier MT (1989) Toughness determination in ceramics using sharp and blunt indentation techniques. Cera I 15:323–325

    Google Scholar 

  25. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. ASME T J Eng Ind 113:184–189

    Article  Google Scholar 

  26. Venkatesh VC, Inasaki I, Toenshof HK et al (1995) Observations on polishing and ultraprecision machining of semiconductor substrate materials. CIRP Ann 44:611–618

    Article  Google Scholar 

  27. Beltrao PA, Gee AE, Corbett J, Whatmore RW (1999) Ductile mode machining of commercial PZT ceramics. CIRP Ann 48:437–440

    Article  Google Scholar 

  28. Blackley WS, Scattergood RO (1994) Chip topography for ductile-regime machining of germanium. ASME T J Eng I 116:263–266

    Article  Google Scholar 

  29. Ngoi BKA, Sreejith PS (2000) Ductile regime finish machining—a review. Int J Adv Manu Tech 16:547–550

    Article  Google Scholar 

  30. Venkatesh VC, Awaluddin MS, Ariffin AR (1999) The tool life, mechanics, and economics in conventional and ultra-precision machining. ASME I Mech Eng Con Ex 10:847–854

    Google Scholar 

  31. Ruff AW, Shin H, Evans CJ (1995) Damage process in ceramics resulting from diamond tool indentation and scratching in various environments. Wear 181–183:551–562

    Article  Google Scholar 

  32. Liu K, Li XP, Rahman M (2003) Characteristics of high speed micro cutting of tungsten carbide. J Mater Proc Tech 140:352–357

    Article  Google Scholar 

  33. Liu K, Li XP, Rahman M et al (2004) A study of the cutting modes in grooving of tungsten carbide. Int J Adv Manu Tech 24:321–326

    Article  Google Scholar 

  34. Liu K, Li XP, Liang YS (2004) Nanometer-scale ductile cutting of tungsten carbide. J Manu Proc 6:187–195

    Article  Google Scholar 

  35. Liu K, Li XP, Rahman M et al (2004) Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance. Int J Adv Manu Tech 24:389–394

    Article  Google Scholar 

  36. Zum Gahr KH (1987) Microstructure and wear of materials. Elsevier, Amsterdam, pp 115–146

    Google Scholar 

  37. Li XP, Rahman M, Liu K et al (2003) Nano-precision measurement of diamond tool edge radius for wafer fabrication. J Mater Proc Tech 140:358–362

    Article  Google Scholar 

  38. Meyers MA (1994) Dynamic behaviour of materials. Wiley, New York, pp 488–566

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, K., Wang, H., Zhang, X. (2020). Modelling of Ductile Mode Cutting. In: Ductile Mode Cutting of Brittle Materials. Springer Series in Advanced Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-32-9836-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9836-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9835-4

  • Online ISBN: 978-981-32-9836-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics