Skip to main content

Federated Learning for Industrial Entity Extraction

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

  • 502 Accesses

Abstract

Entity extraction in the industrial field is an important part of the realization of digital transformation in the industrial field. The construction of entity extraction model in the industrial field requires a large amount of data from various parties. However, due to the security and privacy issues of the data, the data in the industrial field often exists in the form of islands, so it is almost impossible to integrate the data scattered among various parties. Therefore, this paper proposes a federated learning framework to assist parties in industry to overcome data silos and collaborate in building entity extraction models. The solution to the Non-IID problem in federal learning is to find an index to measure the data performance of all participants. Participants with relatively good data performance have a higher weight in the aggregation stage, while participants with relatively poor data performance have a lower weight in the aggregation stage. In this paper, an aggregation update method FedData is proposed to improve the performance of federated learning in data Non-IID scenarios. The method measures the data performance of each participant based on the aggregate test performance of each participant’s local model on the private data of other participants and assigns aggregate weights to each participant based on this. The experimental results show that the framework can make the participants who cannot cooperate in modeling jointly build the entity extraction model without being constrained by data security and privacy issues, so as to achieve better results. Moreover, the aggregation update method proposed in this paper has better performance than FedAvg in the scenario where the data is not independent and equally distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singhal, A., et al.: Introducing the knowledge graph: things, not strings. Official Google Blog 5, 16 (2012)

    Google Scholar 

  2. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  3. Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: Ernie: enhanced language representation with informative entities. arXiv preprint arXiv:1905.07129 (2019)

  4. Liu, W., et al.: K-BERT: enabling language representation with knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2901–2908 (2020)

    Google Scholar 

  5. Zhao, S., Cai, Z., Chen, H., Wang, Y., Liu, F., Liu, A.: Adversarial training based lattice LSTM for Chinese clinical named entity recognition. J. Biomed. Inform. 99, 103290 (2019)

    Article  Google Scholar 

  6. Jolfaei, A., Ostovari, P., Alazab, M., Gondal, I., Kant, K.: Guest editorial special issue on privacy and security in distributed edge computing and evolving IoT. IEEE Internet Things J. 7(4), 2496–2500 (2020)

    Article  Google Scholar 

  7. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14(1–2), 1–210 (2021)

    Article  MATH  Google Scholar 

  8. Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Trans. Neural Netw. Learn. Syst. 31(10), 4229–4238 (2019)

    Article  Google Scholar 

  9. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

  10. Sattler, F., Wiedemann, S., Müller, K.-R., Samek, W.: Robust and communication-efficient federated learning from non-IID data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–3413 (2019)

    Article  Google Scholar 

  11. Hammerton, J.: Named entity recognition with long short-term memory. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp. 172–175 (2003)

    Google Scholar 

  12. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  13. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pretraining of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  14. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 34(1), 50–70 (2020)

    Article  Google Scholar 

  15. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  16. Dong, C., Zhang, J., Zong, C., Hattori, M., Di, H.: Character-based LSTM-CRF with radical-level features for Chinese named entity recognition. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 239–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_20

    Chapter  Google Scholar 

  17. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  18. Wu, W., He, L., Lin, W., Mao, R., Maple, C., Jarvis, S.: SAFA: a semi-asynchronous protocol for fast federated learning with low overhead. IEEE Trans. Comput. 70(5), 655–668 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, X., Liao, Y., Lio, P., Hui, P.: Privacy-preserving asynchronous federated learning mechanism for edge network computing. IEEE Access 8, 48970–48981 (2020)

    Article  Google Scholar 

  20. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  21. Chai, Z., Chen, Y., Anwar, A., Zhao, L., Cheng, Y., Rangwala, H.: FedAT: a high-performance and communication-efficient federated learning system with asynchronous tiers. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–16 (2021)

    Google Scholar 

  22. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, S., Zhao, X., Yang, C. (2023). Federated Learning for Industrial Entity Extraction. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics