Skip to main content

Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica

  • Conference paper
  • First Online:
Applied Molecular Genetics

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 43))

Abstract

Y. lipolytica can be grown on hydrocarbons, and has been used to make single cell proteins and citric acid. The existence of sexuality allowed the performance of inbreeding programs leading to strains that can be utilized for classical genetic analysis. Physiological and genetic studies have been carried out on hydrocarbon utilization, lysine biosynthesis and catabolism, and protein secretion.

Due to the lack of plasmids, transformation of Y. lipolytica was first achieved by chromosomal integration, using either homologous or heterologous genes as markers. In a second step, the isolation of ars sequences allowed the building up autoreplicating vectors. A number of heterologous genes have been expressed in Y. lipolytica, such as those coding for calf prochymosin, S. cerevisiae invertase and porcine alpha-1-interferon. These proteins are secreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shah DN, Purokit AP, Sriprakash RS (1982) Enzyme Microbiol Technol 4:69

    Google Scholar 

  2. Maldonado P, Gaillardin C (1972) French Patent 41913

    Google Scholar 

  3. De Zeeuw J, Tynan EJ (1973) USA Patent 3736229

    Google Scholar 

  4. De Zeeuw J, Tynan EJ (1973) USA Patent 3736917

    Google Scholar 

  5. De Zeeuw J, Stasko I (1983) USA Patent 4407953

    Google Scholar 

  6. Tobe ST, Takami T, Ikeda S, Mitsugi K (1976) Agric Biol Chem 40: 1087

    Google Scholar 

  7. Wickerham LJ, Kurtzman CP, Herman AI (1970) Science 167: 1141

    Google Scholar 

  8. Yarrow D (1972) Ant Van Leeuwenh 36: 357

    Google Scholar 

  9. Van der Walt JP, Arx JA (1980) Ant van Leeuwenh 46: 517

    Google Scholar 

  10. Gaillardin CM, Charoy V, Heslot H (1973) Arch Microbiol 92: 69

    Google Scholar 

  11. Ogrydziak D, Bassel J, Contopoulou R, Mortimer R (1978) Molec Gen Genet 163: 229

    Google Scholar 

  12. Kurischko C, Inge-Vechtomov SG, Weber H (1983) Zeitsch Allg. Mikrobiol 23: 513

    Google Scholar 

  13. Barth G, Weber H (1984) Zeitsch Allg Mikrobiol 24: 125

    Google Scholar 

  14. Barth G, Weber H (1984) Zeitsch Allg Mikrobiol 24: 403

    Google Scholar 

  15. Barth G, Weber H (1985) Ant van Leeuwenh 51: 167

    Google Scholar 

  16. Esser K, Stahl U (1976) Molec Gen Genet 146: 101

    Google Scholar 

  17. Weber H (1978) Zeitsch Allg Mikrobiol 19: 283

    Google Scholar 

  18. Ota Y, Oikawa S, Morimoto Y, Minoda Y (1984) Agri Biol Chem 48: 1933

    Google Scholar 

  19. Rodriguez C, Dominguez A (1984) Can J Microbiol 30: 605

    Google Scholar 

  20. Vega R, Dominguez A (1986) Arch Microbiol 144: 124

    Google Scholar 

  21. Fournier P, Guyaneux I, Chasles M, Gaillardin C (submitted for publ) Yeast

    Google Scholar 

  22. Ogrydziak D, Bassel J, Mortimer R (1982) Mol Gen Genet 188: 179

    Google Scholar 

  23. Ogrydziak D (1988) J Basic Microbiol 28: 185

    Google Scholar 

  24. Kurischko C (1984) Zeitsch Allg Mikrobiol 24: 545

    Google Scholar 

  25. Kurischko C (1986) J Basic Mikrobiol 26: 33

    Google Scholar 

  26. Bassel JB Mortimer RK (1985) Curr Genet 9: 579

    Google Scholar 

  27. Mortimer RK, Tavares FC (1976) Genetic mapping in yeast In: Microbiology ASM. Washington DC, pp 572–574

    Google Scholar 

  28. De Jonge P, de Jonge FCM, Meijers R, Steensha HY, Scheffers WA (1986) Yeast 2: 193

    Google Scholar 

  29. Johnston JR, Mortimer RK (1986) Int J Syst Bacteriol 36: 569

    Google Scholar 

  30. Stahl U (1978) Molec Gen Genet 160: 111

    Google Scholar 

  31. Weber H, Förster W, Jacob HE, Berg H (1980) 5th Intern Sympos Yeasts July 20–25, 1980, pp 219–224

    Google Scholar 

  32. Kurischko C, Spata L (1984) Zeitsch Allg Mikrobiol 24: 551

    Google Scholar 

  33. Kurischko C, Weber H (1985) J Basic Microbiol 26: 137

    Google Scholar 

  34. Kurischko C (1986) Curr Genet 10: 709

    Google Scholar 

  35. Kurtzman CP, Phaff HJ, Meyer SA (1983) In: Spencer JTF, Spencer DM, Smith ARW, (eds) Yeast genetics. Springer, Berlin Heidelberg New York, p 139

    Google Scholar 

  36. Kück V, Stahl U, Lhermitte A, Esser K (1980) Curr Genet 2: 97

    Google Scholar 

  37. Hollenberg CP, Borst P, Van Bruggen EFJ (1970) Biochem Biophys Acta 209: 1

    Google Scholar 

  38. Matsuoka M, Uchia K, Aiba S (1982) J Bacteriol 152: 530

    Google Scholar 

  39. Van Heerikhuizen H, Ykema A, Klootwijk G, Gaillardin C, Ballas C, Fournier P (1985) Gene 39: 213

    Google Scholar 

  40. Fournier P, Gaillardin C, Persuy PA, Klootwijk J, van Heerikhuize H (1986) Gene 42: 273

    Google Scholar 

  41. Clare JJ, Davidow LS, Gardner DC, Oliver SG (1986) Curr Genet 10: 449

    Google Scholar 

  42. Wickner RB (1979) Plasmid 2: 303

    Google Scholar 

  43. Bussey H (1981) Adv Microb Physiol 22: 93

    Google Scholar 

  44. Groves DP, Clare JJ, Oliver SG (1983) Curr Genet 7: 185

    Google Scholar 

  45. Tréton BY, Le Dall MT, Heslot H (1985) Curr Genet 9: 279

    Google Scholar 

  46. El-Sherbeini M, Bostian KA, Levitre J, Mitchell D (1987) Curr Genet 11: 483

    Google Scholar 

  47. Tréton BY, Le Dall MT, Heslot H (1987) Curr Genet 12: 37

    Google Scholar 

  48. Akiyama SI, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973) Agr Biol Chem 37: 879

    Google Scholar 

  49. Akiyama SI, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973) Agri Biol Chem 37: 885

    Google Scholar 

  50. Tréton B, Heslot H (1977) Agri Biol Chem 42: 1201

    Google Scholar 

  51. Tréton B, Le Dall MT, Heslot H (1978) Europ J Appl Microbiol Biotech 6: 67

    Google Scholar 

  52. Finogenova TV, Glazunova LM (1982) Mikrobiologiya 51: 27

    Google Scholar 

  53. Finogenova TV, Shishkanova NV, Ermakova IT Kataeva IA (1986) Appl Microbiol Biotechnol 23: 378

    Google Scholar 

  54. Shah DN, Purohit AP, Sriprakash KS (1982) Enzym Microb Techn. 4: 116

    Google Scholar 

  55. Shah DN, Sriprakash KS, Chattoo BB (1989) J Biotechn 12: 211

    Google Scholar 

  56. Matsuoka M, Himeno T, Aiba S (1984) J Bacteriol 157: 899

    Google Scholar 

  57. Hönes I (1984) Zeitsch Allg Mikrobiol 24: 599

    Google Scholar 

  58. Barth G (1985) Curr Genet 10: 119

    Google Scholar 

  59. Barth G, Weber H (1987) Yeast 3: 255

    Google Scholar 

  60. Manney TR, Mortimer RK (1964) Science 143: 581

    Google Scholar 

  61. Heslot H, Gaillardin C, Beckerich JM, Fournier P (1979) In: Sebek O, Laskin A (eds) Genetics-Industrial microorganisms. Americ Soc Microbiol, Washington DC, p 54

    Google Scholar 

  62. Gaillardin C, Ribet AM, Heslot H (1982) Eur J Biochem 128: 489

    Google Scholar 

  63. Gaillardin C, Fournier P, Sylvestre G, Heslot H (1976) J Bacteriol 125: 48

    Google Scholar 

  64. Beckerich JM, Heslot H (1978) J Bacteriol 133: 492

    Google Scholar 

  65. Sawnor-Korszynska D, Morzycka E, Zaborowska D, Ryczynska-Bojunowska K (1977) Acta Biochim Polonica 24: 75

    Google Scholar 

  66. Dürr M, Urech K, Boller T, Wiemken A, Schwenke J, Nagy M (1979) Arch Microbiol 121: 169

    Google Scholar 

  67. Beckerich JM, Lambert M, Heslot H (1981) Biochem Biophys Res Comm 100: 1292

    Google Scholar 

  68. Beckerich JM, Pommies E, Faivre C, Lambert M, Heslot H (1986) Biochimie 68: 517

    Google Scholar 

  69. Beckerich JM, Colonna Ceccaldi B, Lambert M, Heslot H (1984) Curr Genet 8: 531

    Google Scholar 

  70. Errede B, Cardillo TS, Sherman F, Deschamps J, Wiame JM (1980) Cell 22: 427

    Google Scholar 

  71. Elder RT, St John TP, Stinchcomb DT, Daviw Rw (1980) Cold Spring Harbor Sympos Quant Biol 45: 581

    Google Scholar 

  72. Morzycka E, Sawnor-Korzynska D, Paszawski A, Grabski J, Raczynska-Bojanowska K (1976) Appl Envir Microbiol 32: 125

    Google Scholar 

  73. Bassel J, Hambright P, Mortimer R, Bearden AJ (1975) J Bacteriol 123: 118

    Google Scholar 

  74. Louvel L (1979) Contribution à l'étude de la biosynthèse de l'hème chez Saccharomycopsis lipolytica. Thèse Institut National Agronomique Paris

    Google Scholar 

  75. Markov KI, Kibarska T (1971) CR Acad Sci Agri Bulgarie 4: 413

    Google Scholar 

  76. Bassel JB, Mortimer RK (1982) Curr Genet 5: 77

    Google Scholar 

  77. Yorifugi T (1978) n-Alkane oxidation by Saccharomycopsis lipolytica. Ph D Thesis Massachusetts Institute of Technology

    Google Scholar 

  78. Cirigliano MC, Carman GM (1984) Appl. Environm Microbiol 48: 747

    Google Scholar 

  79. Cirigliano MC, Carman GM (1985) Appl Environm Microbiol 50: 846

    Google Scholar 

  80. Kamiryo T, Nishikawa Y, Mishina M, Terao M, Numa S (1979) Proc Natl Acad Sci USA 76: 4390

    Google Scholar 

  81. Kalle GP, Gadkari SV, Deshpande SY (1972) Indian J Biochem Biophys 9: 171

    Google Scholar 

  82. Dherbomez M, Lacrampe JL, Larrouquere J (1975) Rev Franc Corps gras 22: 147

    Google Scholar 

  83. Ota Y, Gomi K, Kato S, Sugiura T, Minoda Y (1982) Agri Biol Chem 46: 2885

    Google Scholar 

  84. Ota Y, Nakamiya T, Yamada K (1970) Agri Biol Chem 34: 1368

    Google Scholar 

  85. Ota Y, Morimoto Y, Sugiura T, Minoda Y (1978) Agric Biol Chem 42: 1937

    Google Scholar 

  86. Nga BH, Heslot H, Gaillardin CM, Fournier P, Chan K, Chan YN, Lim EW, Nai PC (1988) J Biotechnol 7:83

    Google Scholar 

  87. Nga BH, Gaillardin CM, Fournier P, Heslot H (1989) J Gen Microbiol 135: 2439

    Google Scholar 

  88. Cheng SC, Ogrydziak DM (1986) J Bacteriol 168: 581

    Google Scholar 

  89. Cheng SC, Ogrydziak DM (1987) J Bacteriol 169: 1433

    Google Scholar 

  90. Yamada T, Ogrydziak DM (1983) J Bacteriol 154: 23

    Google Scholar 

  91. Ogrydziak DM, Mortimer RK (1977) Genetics 87: 621

    Google Scholar 

  92. Mehta RD, von Borstel RC (1979) Genetics 91: 80

    Google Scholar 

  93. Simms PC, Ogrydziak DM (1981) J Bacteriol 145: 404

    Google Scholar 

  94. Matoba S, Ogrydziak DM (1989) J Biol Chem 264: 6037

    Google Scholar 

  95. Gaillardin CM, Ribet A, Heslot H (1985) Curr Genet 10: 49

    Google Scholar 

  96. Eibel H, Philippsen P (1983) Mol Gen Genet 191: 66

    Google Scholar 

  97. Davidow LS, Apostolakos D, O'Connel MM, Proctor AA, Ogrydziak DM, Wing RA, Stasko I, De Zeeuw JR (1985) Curr Genet 10: 39

    Google Scholar 

  98. Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153: 163

    Google Scholar 

  99. Beach D, Piper M, Shall S (1980) Nature 284: 185

    Google Scholar 

  100. Chan CSM, Tye BK (1980) Proc Natl Acad Sci USA 77: 6329

    Google Scholar 

  101. Wing RA, Ogrydziak DM (1985) In: Timberlake WE (ed) Molecular genetics of filamentous fungi, AR Liss, New York, p 367

    Google Scholar 

  102. Murray AW, Szostak JM (1983) Cell 34: 961

    Google Scholar 

  103. Davidow LS, Kaczmarek FS, De Zeeuw JR, Coulon SW, Lath MR, Pereira DA, Franke AE (1987) Curr Genet 11: 377

    Google Scholar 

  104. Davidow LS, Kaczmarek FS, De Zeeuw JR, Coulon SW, Lauth MR, Pereira DA, Franke AE (1987) Curr Genet 11: 377

    Google Scholar 

  105. Davidow LS, De Zeeuw JR (1985) European Patent 138 508

    Google Scholar 

  106. Xuan JW, Fournier P, Gaillardin C (1988) Curr Genet 14: 15

    Google Scholar 

  107. Davidow LS, O'Donnell MM, Kaczmarek FS, Pereira DA, De Zeeuw JR, Franke AE (1987) J Bacteriol 169: 4621

    Google Scholar 

  108. Nicaud JM, Fabre E, Beckerich JM, Fournier P, Gaillardin C (1989) J Biotechn 12: 285

    Google Scholar 

  109. Gaillardin C, Ribet AM (1987) Curr Genet 11: 369

    Google Scholar 

  110. Siegel V, Walter P (1988) TIBS 13: 314

    Google Scholar 

  111. Brennenwald P, Liao XB, Holm K, Poter G, Wise JA (1988) Molec Cell Biol 8: 1580

    Google Scholar 

  112. Poritz MA, Siegel V, Hansen W, Walter P (1988) Proc Natl. Acad Sci USA 85: 4315

    Google Scholar 

  113. He F, Beckerich JM, Ribes V, Tollervey D, Gaillardin C (1989) Curr Genet 16: 347

    Google Scholar 

  114. He F, Yaver D, Beckerich JM, Ogrydziak DM, Gaillardin CM (1990) Curr Genet (accepted)

    Google Scholar 

  115. Gaillardin C and Heslot H (1988) J Basic Microbiol 28: 161

    Google Scholar 

  116. Zaret KS, Sherman F (1982) Cell 28: 563

    Google Scholar 

  117. Davidow LS, Franke AE, De Zeeuw JR (1987) European Patent 220864

    Google Scholar 

  118. Nicaud JM, Fabre E, Gaillardin C (1989) Curr Genet 16: 253

    Google Scholar 

  119. La Bonnardière C, Laude H (1981) Infect Immun 32:28

    Google Scholar 

  120. Heslot H, Nicaud JM, Fabre E, Beckerich JM, Fournier P, Gaillardin C (1989) Proc 2nd SSM Intern Congress Microbiology Singapore Oct 31–Nov 3, 1989 (in press)

    Google Scholar 

  121. Franke AE, Kaczmarek FS, Eisenhard ME, Geoghegan KF, Danley DE, De Zeeuw JR, O'Donnell MM, Gollaher MG, Davidow LS (1988) in Develop Industr Mikrobiol 29: 43

    Google Scholar 

  122. Shekman R, Novick P (1982) In: Strathern J, Jones E, Broach J (eds) The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. Cold Spring Harbor, p 361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Heslot, H. (1990). Genetics and genetic engineering of the industrial yeast Yarrowia lipolytica . In: Applied Molecular Genetics. Advances in Biochemical Engineering/Biotechnology, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009079

Download citation

  • DOI: https://doi.org/10.1007/BFb0009079

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52794-7

  • Online ISBN: 978-3-540-47151-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics