Skip to main content

Algorithmic number theory and its relationship to computational complexity

  • Chapter
  • First Online:
Computer Science Today

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1000))

Abstract

Though algorithmic number theory is one of man's oldest intellectual pursuits, its current vitality is perhaps unrivaled in history. This is due in part to the injection of new ideas from computational complexity. In this paper, a brief history of the symbiotic relationship between number theory and complexity theory will be presented. In addition, some of the technical aspects underlying ‘modern’ methods of primality testing and factoring will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman. Algorithmic number theory — the complexity contribution. In Proc. 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, 1994, pp. 88–113.

    Google Scholar 

  2. L. M. Adleman and Ming-Deh Huang. Primality testing and two dimensional Abelian varieties over finite fields, Lecture Notes in Mathematics, Vol. 1512, Springer-Verlag, 1992.

    Google Scholar 

  3. L. M. Adleman and K. S. McCurley. Open problems in number theoretic complexity, II. In L.M. Adleman, M-D. Huang (Eds.), Algorithmic Number Theory, Proc. First Int. Symposium (ANTS-I), Lecture Notes in Computer Science, Vol. 877, Springer-Verlag, 1994, pp. 291–322.

    Google Scholar 

  4. L. M. Adleman, C. Pomerance, and R. Rumely. On distinguishing prime numbers from composite numbers. Annals of Mathematics, 117:173–206, 1983.

    Google Scholar 

  5. D. Coppersmith. Modifications to the number field sieve. Techn. Rep. RC16264, IBM TJ Watson Research Center, Yorktown Heights, NY, 1990.

    Google Scholar 

  6. H. Cramer. On the order of magnitude of the difference between consecutive prime numbers. Acta Arithmetica, 2:23–46, 1936.

    Google Scholar 

  7. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, 22:644–654, 1976.

    Article  Google Scholar 

  8. L. E. Dickson. History of the Theory of Numbers, volume 1. Chelsea Books, New York, 1971.

    Google Scholar 

  9. C. F. Gauss. Disquisitiones Arithmeticae. Springer-Verlag, New York, 1986. Reprint of the 1966 English translation by Arthur A. Clarke, S.J., Yale University Press, revised by William C. Waterhouse. Original 1801 edition published by Fleischer, Leipzig.

    Google Scholar 

  10. J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal of Computing, 4:675–495, 1977.

    Article  Google Scholar 

  11. S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In Proc. 18th Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1986, pp. 316–329.

    Google Scholar 

  12. J. Hartmanis. Gödel, von Neumann and the P=?NP problem, Bulletin of the EATCS Nr 38, 1989, pp. 101–107.

    Google Scholar 

  13. D. R. Heath-Brown. Almost-primes in arithmetic progressions and short intervals. Mathematical Proc. of the Cambridge Philosophical Society, 83:357–375, 1978.

    Google Scholar 

  14. R. Sherman Lehman. Factoring lerge integers. Math. Comp. 18:637–646. 1974.

    Google Scholar 

  15. H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126:649–673, 1987.

    Google Scholar 

  16. A. K. Lenstra and H. W. Lenstra, Jr. (Eds.), The development of the number field sieve. Lecture Notes in Mathematics, Vol. 1554, Springer-Verlag, 1993.

    Google Scholar 

  17. M. Morrison and J. Brillhart. A method of factoring and the factorization of F7. Mathematics of Computation, 29:183–205, 1975.

    Google Scholar 

  18. G. L. Miller. Riemann's Hypothesis and tests for primality. Journal of Computer and System Sciences, 13:300–317, 1976.

    Google Scholar 

  19. V. Pratt. Every prime has a succinct certificate. SIAM Journal of Computing, 4:214–220, 1975.

    Article  Google Scholar 

  20. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128–138, 1980.

    Article  Google Scholar 

  21. R. Rivest, A. Shamir, and L. M. Adleman. for obtaining digital signatures and public key cryptosystems. Communications of the ACM, 21:120–126, 1978.

    Article  Google Scholar 

  22. R. Schoof. Elliptic curves over finite fields and the computation of square roots modulo p. Mathematics of Computation, 44:483–494, 1985.

    Google Scholar 

  23. P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, 1994, pp. 124–134.

    Google Scholar 

  24. R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal of Computing, 6:84–85, 1977.

    Article  Google Scholar 

  25. H.C. Williams and J.O. Shallit. Factoring integers before computers. In Proceedings of Symposium in Applied Mathematics, pages 1–51, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adleman, L.M. (1995). Algorithmic number theory and its relationship to computational complexity. In: van Leeuwen, J. (eds) Computer Science Today. Lecture Notes in Computer Science, vol 1000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0015242

Download citation

  • DOI: https://doi.org/10.1007/BFb0015242

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60105-0

  • Online ISBN: 978-3-540-49435-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics