Skip to main content

Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels

  • Chapter
  • First Online:
Responsive Gels: Volume Transitions II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 110))

Abstract

This article is a review of the research on environmentally responsive polymer gels done by Stevin H. Gehrke's research group at the University of Cincinnati. This group has studied a wide variety of responsive gels, including crosslinked cellulose ethers, poly(N-isopropylacrylamide), and radiation-crosslinked poly(vinyl methyl ether). Equilibrium swelling has been studied both experimentally and theoretically, with the general goal of learning how to control the nature of the volume transition. Conditions under which transition-inducing stimuli affect the rate of volume change have been identified and a diffusion analysis is shown to be broadly useful for correlating the kinetics. Polymer scaling theory provides a qualitative basis for understanding how polymer composition and stimulus interval influence the magnitude of the network diffusion coefficient. The response rate of gels can be several orders of magnitude greater than this if they are microporous and can absorb and expel solvent by a convective process. Diffusion coefficients of solutes in gels decline as the gel shrinks, in generally good agreement with free volume theories. Hydrophobic interactions between gels and drugs are often quite strong, especially in deswollen gels. The ability of these gels to dewater coal slurries has also been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

APS:

ammonium persulfate

C:

mass of crosslinking monomer per 100 g of monomers

CMC:

carboxymethylcellulose

D:

diffusion coefficient

Do :

diffusion coefficient in free solution

DSC:

differential scanning calorimetry

DVS:

divinyl sulfone

f:

friction factor between network and solvent

G:

shear modulus of gel

GRAS:

generally recognized as safe

HPC:

hydroxypropylcellulose

HPMC-E:

hydroxypropylmethylcellulose, Type E

HPMC-K:

hydroxypropylmethylcellulose, Type K

k:

mass transfer coefficient

K:

bulk modulus of gel

K:

partition coefficient

Ko/w :

octanol/water partition coefficient

LCST:

lower critical solution temperatures

L0 :

initial sample thickness

Lt/L∞ :

normalized change in characteristic sample dimension

MC:

methylcellulose

Mt/M∞ :

normalized approach to equilibrium mass

N:

number of polymer structural units in an effective chain segment

NIPAAm:

N-isopropylacrylamide

P*g :

polymer cohesive energy density

PNIPAAm:

poly(N-isopropylacrylamide)

P*s :

solvent cohesive energy density

PVME:

poly(vinyl methyl ether)

Q:

equilibrium swelling degree of gel

SDS:

sodium dodecyl sulfate

SMB:

sodium metabisulfite

T:

mass of monomers (in grams) added to 100 ml of water

T:

temperature

t:

time

TEAC:

tetraethylammonium chloride

TEMED:

N,N,N′,N′-tetramethylethylenediamine

Te :

equilibrium temperature

Ti :

initial temperature

Ts :

spinodal temperature

Tt/T∞ :

normalized approach to equilibrium temperature

v:

velocity

Zsg :

correction for deviation from a geometric mean mixing rule

φ:

polymer volume fraction

η:

solvent viscosity

Ξ:

correlation length

9 References

  1. Gehrke SH, Lee PI (1990) In: Tyle P (ed) Specialized drug delivery systems: manufacturing and production technology. Marcel Dekker, New York, p 333

    Google Scholar 

  2. Tanaka T (1981) Sci Am 244: 124

    PubMed  Google Scholar 

  3. Peppas NA, Barr-Howell BD (1986) In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol I fundamentals. CRC Press, Boca Raton, FL, p 27

    Google Scholar 

  4. Freitas RFS, Cussler EL (1987) Chem Eng Sci 42: 97

    Article  Google Scholar 

  5. Gehrke SH, Cussler EL (1989) Chem Eng Sci 44: 559

    Google Scholar 

  6. Tanaka T, Nishio I, Sun S, Ueno-Nishio S (1982) Science 218: 467

    Google Scholar 

  7. Tanaka T (1978) Phys Rev Lett 40: 820

    Article  Google Scholar 

  8. Suzuki A, Tanaka T (1990) Nature 346: 345

    Article  Google Scholar 

  9. Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Macromolecules 23: 1517

    Article  Google Scholar 

  10. Lee KK, Cussler EL, Marchetti M, McHugh MA (1990) Chem Eng Sci 45: 766

    Article  Google Scholar 

  11. Ohmine I, Tanaka T (1982) J Chem Phys 11: 5725

    Article  Google Scholar 

  12. Huang X, Unno H, Akehata T, Hirasa O (1988) J Chem Eng Jpn 21: 10

    Google Scholar 

  13. Horbett TA, Kost J, Ratner BD (1984) In: Shalaby SW, Hoffman AS, Ratner BD, Horbett TA (eds) Polymers as biomaterials. Plenum, New York, p 193

    Google Scholar 

  14. Sussmann MV, Katchalsky A (1970) Science 167: 45

    PubMed  Google Scholar 

  15. Tatara Y (1978) Polym J 10: 563

    Google Scholar 

  16. Lyu LH, Gehrke SH (1989) AIChE Annual Meeting, Paper 98j, San Francisco, CA

    Google Scholar 

  17. Katchalsky A (1949) Experientia 5: 319

    Article  Google Scholar 

  18. Katchalsky A, Sussmann MV, Oplatka A, Steinberg I (1967) US Patent No. 3,321,908

    Google Scholar 

  19. Dusek, K, Patterson D (1968) J Polym Sci A-2 6: 521

    Google Scholar 

  20. Research Institute for Polymers and Textiles Bulletin (1989) Ibaraki, Japan p 12

    Google Scholar 

  21. Taylor LD, Cerankowski LD (1975) J Polym Sci, Polym Chem Edn 13: 2551

    Google Scholar 

  22. Hirokawa Y, Tanaka T (1984) J Chem Phys 81: 6379

    Article  Google Scholar 

  23. Katayama S, Hirokawa Y, Tanaka T (1984) Macromolecules 17: 2641

    Article  Google Scholar 

  24. Bae YH, Okano T, Kim SW (1989) J Controlled Release 9: 271

    Article  Google Scholar 

  25. Okano T, Bae YH, Jacobs H, Kim SW (1990) J Controlled Release 11: 255

    Google Scholar 

  26. Mukae K, Bae YH, Okano T, Kim SW (1990) Polym J 22: 250

    Article  Google Scholar 

  27. Hoffman AS, Afrassiabi A, Dong LC (1986) J Controlled Release 4: 213

    Article  Google Scholar 

  28. Hoffman AS (1987) J Controlled Release 6: 297

    Article  Google Scholar 

  29. Cussler EL, Stokar MR, Varberg JE (1984) AIChE J 30: 578

    Article  Google Scholar 

  30. Gehrke SH, Andrews GP, Cussler EL (1986) Chem Eng Sci 41: 2153

    Article  Google Scholar 

  31. Trank SJ, Cussler EL (1987) Chem Eng Sci 42: 381

    Article  Google Scholar 

  32. Siegel RA, Firestone BA (1988) Macromolecules 21: 3254

    Article  Google Scholar 

  33. Firestone BA, Siegel RA (1988) Polym Commun 29: 204

    Google Scholar 

  34. Beltran S, Hooper HH, Blanch HW, Prausnitz JM (1990) J Chem Phys 92: 2061

    Article  Google Scholar 

  35. Hooper HH, Baker JP, Blanch HW, Prausnitz JM (1990) Macromolecules 23: 1096

    Article  Google Scholar 

  36. Yoshio N, Hirohito N, Matsuhiko M (1986) J Chem Eng Jpn 19: 274

    Google Scholar 

  37. Amiya T, Tanaka T (1987) Macromolecules 20: 1162

    Article  Google Scholar 

  38. Harsh DC, Gehrke SH (1990) In: Brannon-Peppas L, Harland R (eds) Absorbent polymer technology. Elsevier, Amsterdam, p 103

    Google Scholar 

  39. Huang X, Unno H, Akehata T, Hirasa O (1987) J Chem Eng Jpn 20: 123

    Google Scholar 

  40. Peppas NA (1987) In: Hydrogels in medicine and pharmacy, vol. 2 polymers. CRC Press, Boca Raton FL, p 1

    Google Scholar 

  41. Urry DW, Harris D, Long MM, Prasad KU (1986) J Peptide Protein Res 28: 649

    Google Scholar 

  42. Klier J, Scranton AB, Peppas NA (1990) Macromolecules 23: 4944

    Article  Google Scholar 

  43. Scranton AB, Klier J, Peppas NA (1991) J Polym Sci, Polym Phys Ed 29: 211

    Google Scholar 

  44. Scranton AB, Klier J, Aronson CL (1992) In: Harland RS, Prud'homme, RK (eds) Polyelectrolyte gels, ACS symposium series 480. American Chemical Society, Washington, DC

    Google Scholar 

  45. Gehrke SH, Palasis M, Akhtar MK (1992) Polymer Int 28: 29

    Google Scholar 

  46. Kabra BG, Akhtar MK, Gehrke SH (1992) Polymer 33: 990

    Article  Google Scholar 

  47. Ilavsky M (1981) Polymer 22: 1687

    Article  Google Scholar 

  48. Ilavsky M (1982) Macromolecules 15: 782

    Article  Google Scholar 

  49. Prange MM, Hooper HH, Prausnitz JM (1989) AIChE J 35: 803

    Article  Google Scholar 

  50. Marchetti M, Prager S, Cussler EL (1990) Macromolecules 23: 1760

    Article  Google Scholar 

  51. Marchetti M, Prager S, Cussler EL (1990) Macromolecules 23: 3445

    Article  Google Scholar 

  52. Harsh D, Gehrke SH (1991) J Controlled Release 17: 175

    Article  Google Scholar 

  53. Harsh D, Gehrke SH (1993) In: El-Nokaly M, Piatt D, Charpentier B (eds) Polymeric delivery systems. ACS symposium series 520. American Chemical Society, Washington, DC, p 105

    Google Scholar 

  54. Otake K, Inomata H, Konno M, Saito S (1990) Macromolecules 23: 283

    Article  Google Scholar 

  55. Tanaka T, Sun ST, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Nature 325: 796

    Article  Google Scholar 

  56. Matsuo ES, Tanaka T (1988) J Chem Phys 89: 1695

    Article  Google Scholar 

  57. Grimshaw PE, Grodzinsky AJ, Yarmush ML, Yarmush DM (1990) Chem Eng Sci 45: 2917

    Article  Google Scholar 

  58. Chou LY, Blanch HW, Prausnitz JM (1992) J Appl Poly Sci 45: 1411

    Article  Google Scholar 

  59. Gehrke SH, Lyu LH, Yang MC (1989) Polym Prepr 30: 482

    Google Scholar 

  60. Tanaka T, Fillmore DJ (1979) J Chem Phys 70: 1214

    Article  Google Scholar 

  61. Gehrke SH, Akhtar MK (1990) In: 33rd IUPAC international symposium on macromolecules. July 8–13, Montreal, Canada

    Google Scholar 

  62. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J (1985) Phys Rev Lett 55: 2455

    Article  PubMed  Google Scholar 

  63. Li Y, Tanaka T (1990) J Chem Phys 92: 1365

    Article  Google Scholar 

  64. Li Y, Tanaka T (1991) In: De Rossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels: Fundamentals and biomedical applications. Plenum Press, New York, p 41

    Google Scholar 

  65. Kabra B, Gehrke S (1991) Polym Commun 32: 322

    Google Scholar 

  66. Tatara Y, Mori M (1972) Trans Jpn Soc Mech Eng 38: 2807

    Google Scholar 

  67. Chiarelli P, Umezawa K, De Rossi D (1991) In: De Rossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels: Fundamentals and biomedical applications. Plenum, New York, p 195

    Google Scholar 

  68. Leung BK, Robinson J (1990) J Membr Sci 52: 1

    Article  Google Scholar 

  69. Feil H, Bae YH, Feijen J, Kim SW (1991) J Membr Sci 64: 283

    Article  Google Scholar 

  70. Palasis M, Gehrke SH (1992) J Controlled Release 18: 1

    Article  Google Scholar 

  71. De Rossi D, Kajiwara K, Osada Y, Yamauchi A (eds) (1991) Polymer gels: Fundamentals and biomedical applications. Plenum, New York

    Google Scholar 

  72. Urry DW, Harris RD, Prasad KU (1988) J Am Chem Soc 110: 3303

    Article  Google Scholar 

  73. Suzuki M (1989) Kobunshi Ronbunshu 46: 603

    Google Scholar 

  74. Tatara Y (1987) Adv Robotics 2: 69

    Google Scholar 

  75. Bishop JE (1990) In: The Wall Street Journal, August 13, p B1

    Google Scholar 

  76. De Rossi DE, Galletti PM, Dario P, Richardson PD (1983) ASAIO J 6: 1

    Google Scholar 

  77. De Rossi DE, Parrini P, Chiarelli P, Buzzigoli G (1985) Trans Am Soc Artif Intern Organs 31: 60

    PubMed  Google Scholar 

  78. De Rossi DE, Chiarelli P, Buzzigoli G, Domenici C, Lazzeri L (1986) Trans Am Soc Artif Intern Organs 32: 157

    Google Scholar 

  79. Chiarelli P, De Rossi D (1988) Progr Colloid Polym Sci 78: 4

    Google Scholar 

  80. Stinson S (1990) Chem Eng News, January 8, p 30

    Google Scholar 

  81. Shiga T, Hirose Y, Okada A, Kurauchi T (1990) Polym Prepr 30: 310

    Google Scholar 

  82. Sheppard NF, Lee HL, Madrid Y, Melcher JR, Langer RS (1988) Annual AIChE Meeting, paper 120i, Washington DC

    Google Scholar 

  83. Osada Y, Umezawa K, Yamauchi A (1988) Makromol Chem 189: 597

    Article  Google Scholar 

  84. Umezawa K, Osada Y (1987) Chem Lett 1795

    Google Scholar 

  85. Gillmore VE (1989) Popular Sci 235: 24

    Google Scholar 

  86. Wald ML (1992) In: The New York Times, August 16, p F9

    Google Scholar 

  87. Tanaka T (1992) In: Harland RS, Prud'homme RK (eds) Polyelectrolyte gels, ACS symposium series 480. American Chemical Society, Washington, DC, p 1

    Google Scholar 

  88. Urry DW (1990) Polymeric Materials Eng Sci 63: 329

    Google Scholar 

  89. Cornejo-Bravo JM, Siegel RA (1990) Proc Intern Symp Contr Rel Bioact Mat 17: 174

    Google Scholar 

  90. Grimshaw PE, Grodzinsky AJ, Yarmush ML, Yarmush DM (1989) Chem Eng Sci 44: 827

    Article  Google Scholar 

  91. Grodzinsky AJ, Grimshaw PE, Yarmush ML (1990) Proc Intern Symp Contr Rel Bioact Mat 17: 108

    Google Scholar 

  92. Afrassiabi A, Hoffman AS, Cadwell LA (1987) J Membr Sci 33: 191

    Article  Google Scholar 

  93. Dong LC, Hoffman AS (1992) J Controlled Release 19: 171

    Article  Google Scholar 

  94. Dong LC, Hoffman AS (1990) J Controlled Release 13: 21

    Article  Google Scholar 

  95. Mukae K, Bae YH, Okano T, Kim SW (1990) Polym. J 22: 206

    Article  Google Scholar 

  96. Bae YH, Okano T, Kim SW (1989) J Controlled Release 9: 271

    Article  Google Scholar 

  97. Bae YH, Okano T, Kim SW (1991) Pharm Res 8: 531

    Article  PubMed  Google Scholar 

  98. Bae YH, Okano T, Kim SW (1991) Pharm Res 8: 624

    Article  PubMed  Google Scholar 

  99. Kwon IC, Bae YH, Kim SW (1991) Nature 28: 291

    Article  Google Scholar 

  100. Kwon IC, Bae YH, Okano T, Kim SW (1991) J Controlled Release 17: 149

    Article  Google Scholar 

  101. Horbett TA, Ratner BD, Kost J, Singh M (1984) In: Anderson JM, Kim SW (eds) Recent advances in drug delivery systems. Plenum, New York, p 209

    Google Scholar 

  102. Horbett TA, Ratner BD (1988) Proceedings Pharm Tech Conference '88. East Rutherford, NJ, p 356

    Google Scholar 

  103. Kost J, Horbett TA, Ratner BD (1985) J Biomed Mater Res 19: 1117

    Article  PubMed  Google Scholar 

  104. Albin GW, Horbett TA, Miller SR, Ricker NL (1987) J Controlled Release 6: 267

    Article  Google Scholar 

  105. Osada Y, Takeuchi Y (1981) J Polym Sci, Poly Lett Ed 19: 303

    Google Scholar 

  106. Osada Y, Takeuchi Y (1983) Polym J 15: 279

    Google Scholar 

  107. Osada Y, Hasebe M (1985) Chem Lett 12: 85

    Google Scholar 

  108. Huang X, Akehata T, Unno H, Hirasa O (1989) Biotech Bioeng 34: 102

    Article  Google Scholar 

  109. Hirasa O, Ito, S, Yamauchi A, Fujishige S, Ichijo H (1991) In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels: Fundamentals and biomedical applications. Plenum Press, New York, p 241

    Google Scholar 

  110. Dong LC, Hoffman AS (1986) J Controlled Release 4: 223

    Article  Google Scholar 

  111. Gehrke SH (1986) Kinetics of gel volume change and its interaction with solutes. Thesis, University of Minnesota, Minneapolis, MN

    Google Scholar 

  112. Kabra BG, Gehrke SH, Hwang ST, Ritschel W (1991) J Appl Polym Sci 42: 2409

    Article  Google Scholar 

  113. Gehrke SH (1992) to appear in: Lee PI (ed) Fundamental aspects of polymers in pharmaceutics. Elsevier, Amsterdam

    Google Scholar 

  114. Gehrke SH, Johnson JF, Robeson J, Vaid N (1991) Biotech Prog 7: 355

    Article  Google Scholar 

  115. Gehrke SH, Lyu, LH, Barnthouse K (1992) submitted

    Google Scholar 

  116. Lyu LH (1990) Dewatering fine coal slurries by gel extraction. Thesis, University of Cincinnati, Cincinnati, OH

    Google Scholar 

  117. Gehrke SH, Lyu LH (1990) Final project report: Dewatering fine coal slurries by gel extraction. Ohio Coal Development Office, Columbus, Ohio

    Google Scholar 

  118. Gehrke SH, Yang MC, Kabra BG, Lyu LH, Akhtar MK (1989) Proceed Intern Symp Control Rel Bioact Mater 16: 209

    Google Scholar 

  119. Gehrke SH, Akhtar MK (1992) submitted

    Google Scholar 

  120. Akhtar MK, Gehrke SH (1992) submitted

    Google Scholar 

  121. Akhtar MK (1990) Volume change kinetics in near critical gels. Thesis, University of Cincinnati, Cincinnati OH

    Google Scholar 

  122. Palasis M, Gehrke SH (1990) Proceed Intern Symp Contr Rel Bioact Mater 17: 385

    Google Scholar 

  123. Palasis M (expected, 1993) Permeability of responsive polymer gels. Thesis, University of Cincinnati, Cincinnati OH

    Google Scholar 

  124. Harsh DC, Gehrke SH (1989) Proceed Intern Symp Contr Rel Bioact Mater 16: 383

    Google Scholar 

  125. Harsh DC (1992) Controlling swelling characteristics of novel cellulose ether gels. Thesis, University of Cincinnati, Cincinnati OH

    Google Scholar 

  126. Kabra BG (expected, 1993) Relationships between synthesis, structure, and swelling properties of responsive polymer gels. Thesis, University of Cincinnati, Cincinnati OH

    Google Scholar 

  127. Gehrke SH, Agrawal G, Yang MC (1992) In: Harland RS, Prud'homme, RK (eds) Polyelectrolyte gels, ACS symposium series 480. American Chemical Society, Washington, DC, p 211

    Google Scholar 

  128. Hrouz J, Ilavsky M, Ulbrich K, Kopecek J (1981) Eur Polym J 17: 361

    Article  Google Scholar 

  129. Ilavsky M, Hrouz J, Ulbrich K (1982) Polym Bull 7: 107

    Google Scholar 

  130. Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392

    Article  Google Scholar 

  131. Trank SJ, Johnson DW, Cussler EL (1989) Food Tech. 43: 78

    Google Scholar 

  132. Dualeh AJ, Steiner CA (1992) In: Harland RS, Prud'homme, RK (eds) Polyelectrolyte gels, ACS symposium series 480. American Chemical Society, Washington, DC, p 42

    Google Scholar 

  133. Doelker E (1990) In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam, p 125

    Google Scholar 

  134. Doelker E (1986) In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol. II polymers. CRC Press, Boca Raton, FL, p 115

    Google Scholar 

  135. Butler RW, Klug ED (1980) In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York, p 1

    Google Scholar 

  136. Brannon-Peppas L (1990) In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam, p 67

    Google Scholar 

  137. Brannon-Peppas L, Peppas NA (1988) Polym Bull 20: 285

    Article  Google Scholar 

  138. Sanchez IC, Lacombe RH (1976) J Phys Chem 80: 2352

    Article  Google Scholar 

  139. Lacombe RH, Sanchez IC (1976) J Phys Chem 80: 2568

    Article  Google Scholar 

  140. Sanchez IC, Lacombe RH (1978) Macromolecules 11: 1145

    Article  Google Scholar 

  141. Sanchez IC, Balazs AC (1989) Macromolecules 22: 2325

    Article  Google Scholar 

  142. Welty JR, Wicks CE, Wilson RE (1984) Fundamentals of momentum, heat, and mass transfer, 3rd edn. John Wiley, New York

    Google Scholar 

  143. Perry RH, Green D (1984) Chemical engineering handbook, 6th edn. McGraw-Hill, New York

    Google Scholar 

  144. Carslaw AS, Jaeger JC (1959) The conduction of heat in solids, 2nd edn. Oxford Clarendon Press, Oxford

    Google Scholar 

  145. Helfferich F (1965) J Phys Chem 69: 1178

    Google Scholar 

  146. Helfferich F (1962) Ion Exchange. McGraw-Hill, New York

    Google Scholar 

  147. Dana PR, Wheelock TD (1974) Ind Eng Chem Fund 13: 20

    Article  Google Scholar 

  148. Levenspiel O (1972) Chemical Reaction Engineering, 2nd edn. John Wiley, New York

    Google Scholar 

  149. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London

    Google Scholar 

  150. Meares P (1968) In: Crank J, Park G (eds) Diffusion in polymers. Academic, London, p 373

    Google Scholar 

  151. Tanaka T, Hocker LO, Benedek GB (1973) J Chem Phys 59: 5151

    Article  Google Scholar 

  152. de Gennes. PG (1979) Scaling concepts in polymer physics. Cornell Unoversity Press, Ithaca, New York

    Google Scholar 

  153. Billovits GF, Durning CJ (1989) Chem Eng Commum 82: 21

    Google Scholar 

  154. Peters A, Schosseler F, Candau SJ (1989) In: Glass J (ed) Polymer in aqueous media: performance through association. Advances in chemistry series 223. American Chemical Society, Washington, DC, p 45

    Google Scholar 

  155. Chatterjee PK, Nguyen HV (1985) In: Chatterjee PK (ed) Absorbency. Textile science and technology, vol. 7. Elsevier Science Publishers, Amsterdam, p 29

    Google Scholar 

  156. Williams JM, Wrobleski DA (1989) Langmuir 4: 656

    Article  Google Scholar 

  157. Barby D, Haq Z (1982) European Patent 0,060,138

    Google Scholar 

  158. Williams JM, Wilkerson KR (1990) Polymer 31: 2162

    Article  Google Scholar 

  159. Yasuda, H, Peterlin A, Colton CK, Smith KA, Merrill EW (1969) Die Makromol Chem 126: 177

    Article  Google Scholar 

  160. Schnitzer JE (1988) Biophys J 54: 1065

    PubMed  Google Scholar 

  161. Peppas NA, Reinhart (1983) J Membr Sci 15: 275

    Article  Google Scholar 

  162. Lustig SR, Peppas NA (1988) J Appl Polym Sci 36: 735

    Article  Google Scholar 

  163. Dearden JC, Tomlinson E (1971) J Pharm Pharmac 73: 735

    Google Scholar 

  164. Hansch C, Anderson S (1967) J Org Chem 32: 2583

    Article  Google Scholar 

  165. Ruckenstein E, Lesins V (1988) In: Mizrahi A (ed) Downstream processes: equipment and techniques. Alan R. Liss, New York, p 246

    Google Scholar 

  166. Luck WA (1980) In: Rowland SP (ed) Water in polymers, ACS symposium series 127. American Chemical Society, Washington DC, p 43

    Google Scholar 

  167. Scopes RK (1987) Protein purification: principles and practice, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  168. Hashman T, Palasis M (1988) unpublished research

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Dušek

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Gehrke, S.H. (1993). Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. In: Dušek, K. (eds) Responsive Gels: Volume Transitions II. Advances in Polymer Science, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0021130

Download citation

  • DOI: https://doi.org/10.1007/BFb0021130

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56970-1

  • Online ISBN: 978-3-540-47836-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics