Skip to main content

Gaze stabilization in the primate

The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 106

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 106))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abend WK (1977) Functional organization of the superior vestibular nucleus of the squirrel monkey. Brain Res 132:65–84

    Article  PubMed  Google Scholar 

  • Adler B, Collewijn H, Curio G, Grüsser O-J, Pause M, Schreiter U, Weiss L (1981) Sigma-movement and sigma-nystagmus: a new tool to investigate the gaze-pursuit system and visual-movement perception in man and monkey. Ann NY Acad Sci 374:284–302

    PubMed  Google Scholar 

  • Albus K, Donate-Oliver F, Sanides D, Fries W (1981) The distribution of pontine projection cells in visual and association cortex of the cat: an experimental study with horseradish peroxidase. J Comp Neurol 201:175–189

    Article  PubMed  Google Scholar 

  • Allum JHJ, Graf W, Dichgans J, Schmidt CL (1976) Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp Brain Res 26:463–485

    Article  PubMed  Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479

    PubMed  Google Scholar 

  • Aschan G, Eksall L, Grant G (1964) Nystagmus following stimulation in the central vestibular pathways using permanent implanted electrodes. Acta Otolaryngol Suppl 192:63–77

    Google Scholar 

  • Atkinson J (1979) Development of optokinetic nystagmus in the human infant and monkey infant: an analogue to development in kittens. In: Freeman RD (ed) Developmental Neurobiology of Vision. NATO Advanced Study Institute Series: Series A, Life Sciences. Plenum, New York, pp 277–287

    Google Scholar 

  • Bach M, Bouis D, Fischer B (1983) An accurate and linear infrared oculometer. J Neurosci Methods 9:9–14

    Article  PubMed  Google Scholar 

  • Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol (Lond) 255:415–433

    PubMed  Google Scholar 

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibular ocular pathway? Brain Res 86:121–127

    Article  PubMed  Google Scholar 

  • Baker R, Berthoz A (eds) (1977) Control of gaze by brain stem neurons. Dev Neurosci vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Balaban CD (1983) A projection from nucleus reticularis tegmenti pontis of Bechterew to the medial vestibular nucleus in rabbits. Exp Brain Res 51:304–309

    Article  PubMed  Google Scholar 

  • Balaban CD, Watanabe E (1984) Functional representation of eye movements in the flocculus of monkeys (Macaca fuscata). Neurosci Lett 49:199–205

    Article  PubMed  Google Scholar 

  • Balaban CD, Ito M, Watanabe E (1981) Demonstration of zonal projections from the cerebellar flocculus to vestibular nuclei in monkeys (Macaca fuscata). Neurosci Lett 27:101–105

    Article  PubMed  Google Scholar 

  • Baloh RW, Henn V, Jaeger J (1982) Habituation of the human vestibulo-ocular reflex by low frequency harmonic acceleration. Am J Otolaryngol 3:235–241

    PubMed  Google Scholar 

  • Barmack NH (1970) Dynamic visual acuity as an index of eye movement control. Vision Res 10:1377–1391

    Article  PubMed  Google Scholar 

  • Barmack NH, Pettorossi VE (1985) Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol 53:481–496

    PubMed  Google Scholar 

  • Barnes GR, Benson AJ, Prior ARJ (1978) Visual-vestibular interaction in the control of eye movement. Aviat Space Environ Med 49:557–564

    PubMed  Google Scholar 

  • Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol 81:365–375

    PubMed  Google Scholar 

  • Behrens F, Grüsser O-J (1982) On the additivity of sigma-and phi-movement in visual perception and oculomotor control. Human Neurobiol 1:121–127

    Google Scholar 

  • Bender MB, Shanzer S (1983) History of optokinetic nystagmus. Neuro Ophthalmol 3:73–88

    Google Scholar 

  • Benevento LA, Rezak M, Santos-Anderson R (1977) An autoradiographic study of the projections of the pretectum in the rhesus monkey (Macaca mulatta): evidence for sensorimotor links to the thalamus and oculomotor nuclei. Brain Res 127:197–218

    Article  PubMed  Google Scholar 

  • Berman N (1977) Connections of the pretectum in the cat. J Comp Neurol 174:227–254

    Article  PubMed  Google Scholar 

  • Berthoz A, Melvill-Jones (eds) (1985) Adaptive mechanisms in gaze control — facts and theories. Reviews of oculomotor research, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Blanks RHI, Precht W (1983) Responses of units in the rat cerebellar flocculus during optokinetic and vestibular stimulation. Exp Brain Res 53:1–15

    Article  PubMed  Google Scholar 

  • Blanks RHI, Estes MS, Markham C (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J Neurophysiol 38:1250–1268

    PubMed  Google Scholar 

  • Blanks RHI, Volkind R, Precht W, Baker R (1977) Responses of cat prepositus hypoglossi neurons to horizontal angular acceleration. Neurosci 2:391–403

    Article  Google Scholar 

  • Blanks RHI, Precht W (1978) Response properties of vestibular afferents in alert cats during optokinetic and vestibular stimulation. Neurosci Lett 10:225–229

    Article  Google Scholar 

  • Blanks RHI, Precht W, Torigoe Y (1983) Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res 52:293–306

    Article  PubMed  Google Scholar 

  • Blanks RHI, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340:315–324

    Article  PubMed  Google Scholar 

  • Böhmer A, Henn V (1983) Horizontal and vertical vestibulo-ocular and cervico-ocular reflexes in the monkey during high frequency rotation. Brain Res 277:241–248

    Article  PubMed  Google Scholar 

  • Böhmer A, Henn V, Suzuki J-I (1985) Vestibulo-ocular reflexes after selective plugging of the semicircular canals in the monkey. Response plane determinations. Brain Res 326:291–298

    Article  PubMed  Google Scholar 

  • Bond HW, Ho P (1970) Solid miniature silver-silver chloride electrodes for chronic implantation. Electronencephalogr Clin Neurophysiol 28:206–208

    Article  Google Scholar 

  • Boyle R, Büttner U, Markert G (1985) Vestibular nuclei activity and eye movements in the alert monkey during sinusoidal optokinetic stimulation. Exp Brain Res 57:362–369

    Article  PubMed  Google Scholar 

  • Brodal A (1954) Afferent cerebellar connections. In: Jansen J, Brodal A (eds) Aspects of cerebellar anatomy. JS Tanum, Oslo, pp 82–188

    Google Scholar 

  • Brodal A (1972) Some features in the anatomical organization of the vestibular nuclear complex in the cat. In: Brodal A, Pompeiano O (eds) Basic aspects of central vestibular mechanisms, Prog Brain Res, vol 37. Elsevier, Amsterdam pp 31–53

    Google Scholar 

  • Brodal A (1981) Neurological anatomy. Oxford University Press, Oxford

    Google Scholar 

  • Brodal A (1983) The periphypoglossal nuclei in the macaque monkey and the chimpanzee. J Comp Neurol 218:257–269

    Article  PubMed  Google Scholar 

  • Brodal A (1984) The vestibular nuclei in the macaque monkey. J Comp Neurol 227:252–266

    Article  PubMed  Google Scholar 

  • Brodal A, Drahløs PA (1963) Two types of mossy fiber terminals in the cerebellum and their regional distribution. J Comp Neurol 121:173–187

    Article  PubMed  Google Scholar 

  • Brodal A, Høivik B (1964) Site and mode of termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch Ital Biol 102:1–21

    PubMed  Google Scholar 

  • Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58:62–79

    Article  PubMed  Google Scholar 

  • Brodal P (1978) The corticopontine projection in the rhesus monkey: origin and principles of organisation. Brain 101:251–283

    PubMed  Google Scholar 

  • Brodal P (1982) Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis pontis in the rhesus monkey. J Comp Neurol 204:44–55

    Article  PubMed  Google Scholar 

  • Brodal P, Brodal A (1982) Further observations on the olivocerebellar projection in the monkey. Exp Brain Res 45:71–83

    Article  PubMed  Google Scholar 

  • Buettner UW, Büttner U (1979) Vestibular nuclei activity in the alert monkey during suppression of vestibular and optokinetic nystagmus. Exp Brain Res 37:581–593

    Article  PubMed  Google Scholar 

  • Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628

    PubMed  Google Scholar 

  • Buettner UW, Henn V, Young LR (1981) Frequency response of the vestibulo-ocular reflex (VOR) in the monkey. Aviat Space Environment Med 52:73–77

    Google Scholar 

  • Buizza A, Schmid R (1982) Visual-vestibular interaction in the control of eye movement: mathematical modeling and computer stimulation. Biol Cybern 43:209–223

    Article  PubMed  Google Scholar 

  • Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–772

    PubMed  Google Scholar 

  • Büttner U, Waespe W (1981) Vestibular nerve activity in the alert monkey during vestibular and optokinetic nystagmus. Exp Brain Res 41:310–315

    Article  PubMed  Google Scholar 

  • Büttner U, Waespe W (1984) Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res 55:97–204

    Article  PubMed  Google Scholar 

  • Büttner U, Meienberg D, Schimmelpfennig B (1983) The effect of central retinal lesions on optokinetic nystagmus in the monkey. Exp Brain Res 52:248–256

    Article  PubMed  Google Scholar 

  • Cannon SC, Robinson DA (1986) The final common integrator is in the prepositus and vestibular nuclei. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press pp 307–311

    Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    Article  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    Article  PubMed  Google Scholar 

  • Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–250

    Article  PubMed  Google Scholar 

  • Cazin L, Precht W, Lannou J (1982) Non-cerebellar visual afferents to the vestibular nuclei involving the prepositus hypoglossal complex: an autoradiographic study in the rat. Exp Brain Res 48:309–313

    Article  PubMed  Google Scholar 

  • Cheron G, Gillis P, Godaux E (1986a) Lesions in the cat prepositus complex: effects on the optokinetic system. J Physiol 372:95–111

    PubMed  Google Scholar 

  • Cheron G, Godaux E, Laune JM, Vanderkelen B (1986b) Lesions in the cat prepositus complex: effects on the vestibulo-ocular reflex and saccades. J Physiol (Lond) 372:75–94

    PubMed  Google Scholar 

  • Chubb MC, Fuchs AF, Scudder CA (1984) Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements. J Neurophysiol 52:724–742

    PubMed  Google Scholar 

  • Cohen B (1974) The vestibulo-ocular reflex arc. In: Kornhuber HH (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 478–540

    Google Scholar 

  • Cohen B (ed) (1981) Vestibular and oculomotor physiology. Ann NY Acad Sci 374, New York

    Google Scholar 

  • Cohen B, Uemura T, Takemori S (1973) Effects of labyrinthectomy on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Equilibrium Res 3:88–93

    Google Scholar 

  • Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol (Lond) 270:321–344

    PubMed  Google Scholar 

  • Cohen B, Henn V, Raphan T, Dennett D (1981) Velocity storage, nystagmus, and visual-vestibular interactions in humans. Ann NY Acad Sci 374:421–433

    PubMed  Google Scholar 

  • Cohen B, Suzuki J-I, Raphan T (1983) Role of the otolith organs in generation of horizontal nystagmus: effects of selective labyrinthine lesions. Brain Res 276:159–164

    Article  PubMed  Google Scholar 

  • Collewijn H (1975) Direction selective units in the rabbit's nucleus of the optic tract. Brain Res 100:489–508

    Article  PubMed  Google Scholar 

  • Collewijn H (1977) Eye-and head movements in freely moving rabbits. J Physiol (Lond) 266:471–498

    PubMed  Google Scholar 

  • Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. In: Braitenberg et al. (eds) Studies brain function. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Collewijn H, Tamminga EP (1984) Human smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgrounds. J Physiol (Lond) 351:217–250

    PubMed  Google Scholar 

  • Collewijn H, Conijn P, Martins AJ, Tamminga EP, Van Die GC (1982) Control of gaze in man: synthesis of pursuit, optokinetic and vestibulo-ocular systems. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 3–22

    Google Scholar 

  • Conway JL, Timberlake GT, Skavenski AA (1981) Oculomotor changes in cats reared without experiencing continuous retinal image motion. Exp Brain Res 43:229–232

    Article  PubMed  Google Scholar 

  • Curthoys IS, Markham CH (1971) Convergence of labyrinth influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res 35:469–490

    Article  PubMed  Google Scholar 

  • Cynader M (1985) Effects of visual deprivation on properties and modifiability of compensatory eye movement systems. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control — facts and theories. Amsterdam, Elsevier, pp 95–109

    Google Scholar 

  • Cynader M, Chernenko G (1976) Abolition of direction selectivity in the visual cortex of the cat. Science 193:504–505

    PubMed  Google Scholar 

  • Demer JL, Robinson DA (1983) Different time constants for optokinetic and vestibular nystagmus with a single velocity storage element. Brain Res 276:173–177

    Article  PubMed  Google Scholar 

  • Dichgans J, Bizzi E, Morasso P, Tagliasco V (1973a) Mechanisms underlying recovery of eye-head coordination following bilateral labyrinthectomy in monkeys. Exp Brain Res 18:548–562

    PubMed  Google Scholar 

  • Dichgans J, Schmidt CL, Graf W (1973b) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp Brain Res 18:319–322

    PubMed  Google Scholar 

  • Dieringer N, Precht W (1982) Dynamics of compensatory vestibular reflexes in the grassfrog, Rana temporaria. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 417–423

    Google Scholar 

  • Dodge R (1923) Adequacy of reflex compensatory eye movements including the effects of neural rivalry and competition. J Exp Psychol 6:169–181

    Google Scholar 

  • Dow RS (1935) The relation of the paraflocculus to movements of the eyes. Am J Physiol 113:296–298

    Google Scholar 

  • Dow RS (1936) The fiber connections of the posterior parts of the cerebellum in the rat and cat. J Comp Neurol 63:527–548

    Article  Google Scholar 

  • Dow RS (1938) Efferent connections of the flocculo-nodular lobe in Macaca mulatta. J Comp Neurol 68:279–305

    Article  Google Scholar 

  • Dubois MFW, Collewijn H (1979) Optokinetic reactions in man elicited by localized retinal motion stimuli. Vision Res 19:1105–1115

    Article  PubMed  Google Scholar 

  • Duensing F, Schaefer K-P (1958) Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch Psychiat Nervenkr 198:225–252

    Article  PubMed  Google Scholar 

  • Duensing F, Schaefer K-P (1960) Die Aktivität einzelner Neurone der Formatio reticularis des nicht gefesselten Kaninchens bei Kopfwendungen und vestibulären Reizen. Arch Psychiat Nervenkr 201:97–122

    Article  PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eckmiller R, Mackeben M (1980) Pre-motor single unit activity in the monkey brain stem correlated with eye velocity during pursuit. Brain Res 184:210–214

    Article  PubMed  Google Scholar 

  • Epema AH, Guldemond JM, Voogd J (1985) Reciprocal connections between the caudal vermis and the vestibular nuclei in the rabbit. Neurosci Lett 57:273–278

    Article  PubMed  Google Scholar 

  • Estanol B, Romero R, Corvery J (1979) Effects of cerebellectomy on eye movements in main. Arch Neurol 36:281–284

    PubMed  Google Scholar 

  • Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des Nervus octavus. Bergmann, Wiesbaden

    Google Scholar 

  • Fernandez C, Frederickson JM (1964) Experimental cerebellar lesions and their effect on vestibular function. Acta Otolaryngol Suppl 192:52–62

    Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    PubMed  Google Scholar 

  • Flandrin JM, Courjon JH, Jeannerod M, Schmid R (1983) Effects of unilateral flocculus lesions on vestibulo-ocular responses in the cat. Neurosci 8:809–817

    Article  Google Scholar 

  • Fuchs AF (1967) Saccadic and smooth pursuit eye movements in the monkey. J Physiol (Lond) 191:609–631

    PubMed  Google Scholar 

  • Fuchs AF, Becker W (eds) (1981) Progress in oculomotor research. Dev Neurosci 12. Elsevier, Amsterdam

    Google Scholar 

  • Fuchs AF, Kimm P (1975) Unit activity in vestibular nuclei of the alert monkey during horizontal angular acceleration and eye movement. J Neurophysiol 38:1140–1161

    PubMed  Google Scholar 

  • Furman JM, O'Leary DP, Wolfe JW (1982) Dynamic range of the frequency response of the horizontal vestibulo-ocular reflex of the alert rhesus monkey. Acta Otolaryngol 93:81–91

    PubMed  Google Scholar 

  • Gacek RR (1969) The course and central termination of first oder neurons supplying vestibular end organs in the cat. Acta Otolaryngol Suppl 254:1–66

    PubMed  Google Scholar 

  • Gacek RR, Lyon M (1974) Localization of vestibular efferent neurons in the kitten with horseradish perxoidase. Acta Otolaryngol 77:92–101

    PubMed  Google Scholar 

  • Gacek RR, Rasmussen GL (1961) Fiber analysis of the stato-acoustic nerve of the guinea pig, cat, and monkey. Anat Rec 139:445–463

    Article  Google Scholar 

  • Galiana HL (1986) A new approach to understanding adaptive visual-vestibular interactions in the central nervous system. J Neurophysiol 55:349–377

    PubMed  Google Scholar 

  • Gardner EP, Fuchs AF (1975) Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert rhesus monkey. J Neurophysiol 38:627–649

    PubMed  Google Scholar 

  • Gerrits NM, Epema AH, Voogd J (1984) The mossy fiber projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neurosci 11:627–644

    Article  Google Scholar 

  • Giolli RA (1963) An experimental study of the accessory optic system in the cynomolgus monkey. J Comp Neurol 121:89–107

    Article  PubMed  Google Scholar 

  • Glickstein M, May JG III (1982) Visual control of movement: the circuits which link visual input to the pons and cerebellum. In: Neff WD (ed) Contributions to sensory physiology. Academic Press, New York, pp 103–145

    Google Scholar 

  • Glickstein M, Stein J, King RA (1972) Visual input to the pontine nuclei. Science 178:1110–1111

    Google Scholar 

  • Glickstein M, Cohen JL, Dixon B, Gibson A, Hollins M, Labossiere E, Robinson F (1980) Corticopontine visual projections in macaque monkeys. J Comp Neurol 190:209–229

    Article  PubMed  Google Scholar 

  • Godaux E, Vanderkelen B (1984) Vestibulo-ocular reflex, optokinetic response and their interactions in the cerebellectomized cat. J Physiol (Lond) 346:155–170

    PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1971a) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660

    PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1971b) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. J Neurophysiol 34:676–684

    Google Scholar 

  • Goldberg JM, Fernandez C (1975) Vestibular mechanisms. Ann Rev Physiol 37:129–162

    Article  Google Scholar 

  • Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025

    PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1982) Eye movements and vestibular-nerve responses produced in the squirrel monkey by rotations about an earth-horizontal axis. Exp Brain Res 46:393–402

    Article  PubMed  Google Scholar 

  • Grasse KL, Cynader MS (1984) Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. J Neurophysiol 51:276–293

    PubMed  Google Scholar 

  • Grüsser O-J, Pause M, Schreiter U (1979) Three methods to elicit Sigma-optokinetic nystagmus in Java monkeys. Exp Brain Res 35:519–526

    Article  PubMed  Google Scholar 

  • Guedry FE (1965) Orientation of the rotation axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol 60:30–48

    PubMed  Google Scholar 

  • Haines DE (1977) Cerebellar corticonuclear and corticovestibular fibers of the flocculonodular lobe in a prosimian primate (Galago senegalensis). J Comp Neurol 174:607–630

    Article  PubMed  Google Scholar 

  • Halstead W, Yacorzynski G, Fearing F (1937) Further evidence of cerebellar influence in the habituation of after-nystagmus in pigeons. Am J Physiol 120:350–355

    Google Scholar 

  • Harris LR, Lepore F, Guillemot JP, Cynader M (1980) Abolition of optokinetic nystagmus in the cat. Science 210:91–92

    PubMed  Google Scholar 

  • Henn V, Young LR, Finley C (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res 71:144–149

    Article  PubMed  Google Scholar 

  • Henn V, Cohen B, Young LR (1980) Visual-vestibular interaction in motion perception and the generation of nystagmus. Neurosci Res Prog Bull 18:457–651

    Google Scholar 

  • Henn V, Reisine H, Waespe W, Boehmer A (1983) Pathophysiology of the vestibular system and its clinical implication. In: Suzuki J-I (ed) Clinical examination on vertigo and loss-of-balance. Gendai, Tokyo, pp 366–378

    Google Scholar 

  • Henn V, Lang W, Hepp K, Reisine H (1984) Experimental gaze palsies in monkeys and their relation to human pathology. Brain 107:619–636

    PubMed  Google Scholar 

  • Hoddevik GH (1978) The projection from nucleus reticularis tegmenti pontis onto the cerebellum in the cat. A study using the methods of anterograde degeneration and retrograde axonal transport of horseradish peroxidase. Anat Embryol 153:227–242

    Article  PubMed  Google Scholar 

  • Hoffmann K-P (1982) Cortical versus subcortical contributions to the optokinetic reflex in the cat. In: Lennerstrand G (ed) Functional basis of ocular motility disorders. Pergamon Press, Oxford, pp 303–310

    Google Scholar 

  • Hoffmann K-P, Distler C (1986) The role of direction selective cells in the nucleus of the optic tract of the cat and monkey during optokinetic nystagmus. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor system. Pergamon Press Oxford, pp 261–266

    Google Scholar 

  • Hoffmann K-P, Schoppmann A (1975) Retinal input to direction selective cells in the nucleus tractus opticus of the cat. Brain Res 99:359–366

    Article  PubMed  Google Scholar 

  • Honrubia V, Koehn WW, Jenkins HA, Fenton WH (1982) Effect of bilateral ablation of the vestibular cerebellum on visual-vestibular interaction. Exp Neurol 75:616–626

    Article  PubMed  Google Scholar 

  • Hudspeth AJ (1983) The hair cells of the inner ear. Sci American 248 1:42–52

    Google Scholar 

  • Hutchins B, Weber JT (1985) The pretectal complex of the monkey: a reinvestigation of the morphology and retinal terminations. J Comp Neurol 232:425–442

    Article  PubMed  Google Scholar 

  • Igarashi M, Miyata H, Kato Y, Wright WK, Levy JK (1975) Optokinetic nystagmus after cerebellar uvulanodulectomy in squirrel monkeys. Acta Otolaryngol 80:180–184

    PubMed  Google Scholar 

  • Igarashi M, Takahashi M, Kubo T, Alford BR, Wright WK (1980) Effect of off-vertical tilt and macular ablation on postrotatory nystagmus in the squirrel monkey. Acta Otolaryngol 90:93–99

    PubMed  Google Scholar 

  • Ingvar S (1918) Zur Phylo-und Ontogenese des Kleinhirns nebst einem Versuche zu einheitlicher Erklärung der zerebellären Funktion und Lokalisation. Folia Neuro-Biol (Leipzig) 11:205–495

    Google Scholar 

  • Ito M (1970) Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 7:162–176

    PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Ito M, Jastreboff PJ, Miyashita Y (1982) Specific effects of unilateral lesions in the flocculus upon eye movements of rabbits. Exp Brain Res 45:233–242

    Article  PubMed  Google Scholar 

  • Jaeger J, Henn V (1981) Habituation of the vestibulo-ocular reflex (VOR) in the monkey during sinusoidal rotation in the dark. Exp Brain Res 41:108–114

    PubMed  Google Scholar 

  • Jaeger J, Henn V, Lang W, Miles TS, Waespe W (1981) Vestibular unit activity in monkeys with horizontal gaze palsy. In: Fuchs AF, Becker W (eds) Progr Oculomot Res, Dev Neurosci, vol 12. Elsevier, Amsterdam, pp 89–95

    Google Scholar 

  • Janeke JB, Jongkees LBW, Oosterveld WJ (1970) Relationship between otoliths and nystagmus. Acta Otolaryngol 69:1–6

    PubMed  Google Scholar 

  • Jensen DW (1983) Survival of function in the deafferented vestibular nerve. Brain Res 273:175–178

    Article  PubMed  Google Scholar 

  • Jung R (1948) Die Registrierung des postrotatorischen und optokinetischen Nystagmus und die optisch-vestibuläre Integration beim Menschen. Acta Otolaryngol 36:199–202

    Google Scholar 

  • Jung R (1978) Perception, consciousness and visual attention. In: Buser P, Rougeul-Buser A (eds) Cerebral correlates of conscious experience. INSERM Symp 6. Elsevier, Amsterdam, pp 15–36

    Google Scholar 

  • Kasai T, Zee DS (1978) Eye-head coordination in labyrinthine-defective human beings. Brain Res 144:123–141

    Article  PubMed  Google Scholar 

  • Kase M, Noda H, Suzuki DA, Miller DC (1979) Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science 205:717–720

    PubMed  Google Scholar 

  • Kato I, Harada K, Nakamura T, Sato Y, Kawasaki T (1982) Role of the nucleus reticularis pontis on visually induced eye movements. Exp Neurol 78:503–516

    Article  PubMed  Google Scholar 

  • Kato I, Harada K, Hasegawa T, Igarashi T, Koike Y, Kawasaki T (1986) Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus. Brain Res 364:12–22

    Article  PubMed  Google Scholar 

  • Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24:459–471

    Article  PubMed  Google Scholar 

  • Keller EL (1978) Gain of the vestibulo-ocular reflex in monkey at high rotational frequencies. Vision Res 18:311–315

    Article  PubMed  Google Scholar 

  • Keller EL, Crandall WF (1983) Neuronal responses to optokinetic stimuli in pontine nuclei of behaving monkey. J Neurophysiol 49:169–187

    PubMed  Google Scholar 

  • Keller EL, Daniels PD (1975) Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Exp Neurol 46:187–198

    Article  PubMed  Google Scholar 

  • Keller EL, Kamath BY (1975) Characteristics of head rotation and eye movement-related neurons in alert monkey vestibular nucleus. Brain Res 100:182–187

    Article  PubMed  Google Scholar 

  • Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized, alert cat. Neurosci 4:1599–1613

    Article  Google Scholar 

  • Kimm J, Hassul M, Cogdell B (1976) Fastigial neuronal responses to sinusoidal horizontal rotation. Exp Neurol 50:579–594

    Article  PubMed  Google Scholar 

  • Koehn WW, Jenkins HA, Honrubia V, Fenton WH (1981) Effect of unilateral ablation of the vestibular cerebellum on visual-vestibular interaction. Exp Brain Res 73:618–631

    Google Scholar 

  • Koenig E, Dichgans J (1981) Aftereffects of vestibular and optokinetic stimulation and their interaction. In: Cohen B (ed) Vestibular and oculomotor physiology. Ann NY Acad Sci 374:434–445

    PubMed  Google Scholar 

  • Koerner F, Schiller PH (1972) The optokinetic response under open and closed loop conditions in the monkey. Exp Brain Res 14:318–330

    Article  PubMed  Google Scholar 

  • Kommerell G (ed) (1978) Augenbewegungsstörungen, Neurophysiologie und Klinik — Disorders of ocular motility, Neurophysiological and clinical aspects. Bergmann, München

    Google Scholar 

  • Kommerell G, Täumer R (1972) Investigations of the eye tracking system through stabilised retinal images. Bibl Ophthalmol 82:288–297

    PubMed  Google Scholar 

  • Korte GE (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292

    Article  PubMed  Google Scholar 

  • Korte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176:3–32

    Article  PubMed  Google Scholar 

  • Korte GE, Mugnaini E (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184:265–278

    Article  PubMed  Google Scholar 

  • Korte GE, Friedrich VL (1979) The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 176:3–32

    Article  PubMed  Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res 142:142–146

    Article  PubMed  Google Scholar 

  • Kowler E, van den Steen J, Tamminga EP, Collewijn H (1984) Voluntary selection of the target for smooth eye movements in the presence of superimposed, full-field stationary, and moving stimuli. Vison Res 24:1789–1798

    Article  Google Scholar 

  • Lackner JR, Graybiel A (1981) Variations in gravitoinertial force level affect the gain of the vestibulo-ocular reflex: implications for the etiology of space motion sickness. Aviat Space Environ Med 52:154–158

    PubMed  Google Scholar 

  • Langer TP (1985) Basal interstitial nucleus of the cerebellum: cerebellar nucleus related to the flocculus. J Comp Neurol 235:38–47

    Article  PubMed  Google Scholar 

  • Langer TP Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37

    Article  PubMed  Google Scholar 

  • Langer TP, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    Article  PubMed  Google Scholar 

  • Lannou J, Cazin L, Precht W, Letaillanter M (1984) Responses of prepositus hypoglossi neurons to optokinetic and vestibular stimulation in the rat. Brain Res 301:39–45

    Article  PubMed  Google Scholar 

  • Larsell O (1937) The cerebellum. A review and interpretation. Arch Neurol Psychiat 38:580–607

    Google Scholar 

  • Lennerstrand G, Zee DS, Keller EL (eds) (1982) Functional basis of ocular motility disorders. Wenner-Gren Symp Ser 37. Pergamon, Oxford

    Google Scholar 

  • Lin H, Giolli RA (1979) Accessory optic system of rhesus monkey. Exp Neurol 63:163–176

    Article  PubMed  Google Scholar 

  • Lindeman HH (1970) Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb Anat Entw Gesch 42:1–113

    Google Scholar 

  • Lisberger SG, Fuchs AF (1978a) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41:733–763

    PubMed  Google Scholar 

  • Lisberger SG, Fuchs AF (1978b) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing pattern during horizontal head rotation and eye movement. J Neurophysiol 41:764–777

    PubMed  Google Scholar 

  • Lisberger SG, Miles FA (1980) Role of primate medial vestibular nucleus in long-term adaptive plasticity of vestibuloocular reflex. J Neurophysiol 43:1725–1745

    PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA (1986) Vestibular signals carried by the pathways subserving plasticity of the vestibulo-occular reflex in monkeys. Neurosci 6:346–354

    PubMed  Google Scholar 

  • Lisberger SG, Westbrook LE (1985) Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys. J Neurosci 5:1662–1673

    PubMed  Google Scholar 

  • Lisberger SG, Miles FA, Optican LM, Eighmy BB (1981) Optokinetic response in monkey: underlying mechanisms and their sensitivity to long-term adaptive changes in vestibuloocular reflex. J Neurophysiol 45:869–890

    PubMed  Google Scholar 

  • Lopez-Barneo J, Darlot C, Berthoz A (1981) Functional role of the prepositus hypoglossi nucleus in the control of gaze. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Prog Brain Res Vol 50. Elsevier, Amsterdam; pp 667–679

    Google Scholar 

  • Lopez-Barneo J, Darlot C, Berthoz A, Baker R (1982) Neuronal activity in prepositus nucleus correlated with eye movement in the alert cat. J Neurophysiol 47:329–352

    PubMed  Google Scholar 

  • Lorente de Nó R (1931) Ausgewählte Kapitel aus der vergleichenden Physiologie des Labyrinths. Die Augenmuskelreflexe beim Kaninchen und ihre Grundlagen. Ergebn Physiol 32:73–242

    Article  Google Scholar 

  • Lorente de Nó R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiatr 30:245–291

    Google Scholar 

  • Lorente de Nó R (1938) Analysis of the activity of the chains of internuncial neurons. J Neurophysiol 1:207–244

    Google Scholar 

  • Lorente de Nó R (1939) Transmission of impulse through cranial motor nuclei. J Neurophysiol 2:402–464

    Google Scholar 

  • Louie AW, Kimm J (1976) The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. Exp Brain Res 24:447–457

    Article  PubMed  Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389

    PubMed  Google Scholar 

  • Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, Leipzig

    Google Scholar 

  • Madigan JC, Carpenter MB (1971) Cerebellum of the rhesus monkey. Univ Park Press, Baltimore

    Google Scholar 

  • Maekawa K, Kimura M, Takeda T (1981a) Mossy fiber activation of the cerebellar flocculus from the visual system. Ann NY Acad Sci 374:476–490

    PubMed  Google Scholar 

  • Maekawa K, Takeda T, Kimura M (1981b) Neural activity of nucleus reticularis tegmenti pontis — the origin of visual mossy fiber afferents to the cerebellar flocculus of rabbits. Brain Res 210:17–30

    Article  PubMed  Google Scholar 

  • Maekawa K, Takeda T, Kimura M (1984) Responses of the nucleus of the optic tract neurons projecting to the nucleus reticularis tegmenti pontis upon optokinetic stimulation in the rabbit. Neurosci Res 2:1–25

    Article  PubMed  Google Scholar 

  • Magnin M, Courjon JH, Flandrin JM (1983) Possible visual pathways to the cat vestibular nuclei involving the nucleus prepositus hypoglossi. Exp Brain Res 51:298–303

    Article  PubMed  Google Scholar 

  • Marcotte RR, Updyke BV (1982) Cortical visual areas of the cat project differentially onto the nuclei of the accessory optic system. Brain Res 242:205–217

    Article  PubMed  Google Scholar 

  • McCrea RA, Baker R (1985a) Cytology and intrinsic organization of the perihypoglossal nuclei in the cat. J Comp Neurol 237:360–376

    Article  PubMed  Google Scholar 

  • McCrea RA, Baker R (1985b) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    Article  PubMed  Google Scholar 

  • McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. In: Granit R, Pompeiano O (eds) Reflex control of posture and movements. Prog Brain Res, Vol 50. Elsevier, Amsterdam; pp 653–665

    Google Scholar 

  • McKinley PA, Peterson BW (1985) Voluntary modulation of the vestibuloocular reflex in humans and its relation to smooth pursuit. Exp Brain Res 60:454–464

    Article  PubMed  Google Scholar 

  • Melvill Jones G, Milsum JH (1971) Frequency response analysis of central vestibular unit activity resulting from rotational stimulation of the semicircular canals. J Physiol (Lond) 219:191–215

    PubMed  Google Scholar 

  • Meyer CH, Lasker AG, Robinson DA (1985) The upper limit of human smooth pursuit velocity. Vision Res 25:561–563

    Article  PubMed  Google Scholar 

  • Miles FA (1974) Single unit firing patterns in the vestibular nuclei related to voluntary eye movements and passive body rotation in conscious monkeys. Brain Res 71:215–224

    Article  PubMed  Google Scholar 

  • Miles FA, Braitman DJ (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. II. Electrophysiological observations on semicircular canal primary afferents. J Neurophysiol 43:1426–1436

    PubMed  Google Scholar 

  • Miles FA, Eighmy BB (1980) Long-term adaptive changes in primate vestibulo-ocular reflex. I. Behavioral observations. J Neurophysiol 43:1406–1425

    PubMed  Google Scholar 

  • Miles FA, Braitman DJ, Dow BM (1980a) Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. J Neurophysiol 43:1477–1493

    PubMed  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980b) Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476

    PubMed  Google Scholar 

  • Miles FA, Kawano K, Optican LM (1986) Short latency ocular following responses of monkey. I. Dependence on temporo-spatial properties of the visual input. J Neurophysiol 56:1321–1354

    PubMed  Google Scholar 

  • Mitsacos A, Reisine H, Highstein SM (1983a) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J Comp Neurol 215:78–91

    Article  PubMed  Google Scholar 

  • Mitsacos A, Reisine H, Highstein SM (1983b) The superior vestibular nucleus: an intracellular HRP study in the cat. II. Non-vestibulo-ocular neurons. J Comp Neurol 215:92–107

    Article  PubMed  Google Scholar 

  • Miyashita Y (1984) Eye velocity responsiveness and its proprioceptive component in the floccular Purkinje cells of the alert pigmented rabbit. Exp Brain Res 55:81–90

    Article  PubMed  Google Scholar 

  • Miyashita Y, Nagao S (1984) Analysis of signal content of Purkinje cell responses to optokinetic stimuli in the rabbit cerebellar flocculus by selective lesions of brainstem pathways. Neurosci Res 1:223–241

    Article  PubMed  Google Scholar 

  • Miyashita Y, Ito M, Jastreboff PJ, Maekawa K, Nagao S (1980) Effect upon eye movements of rabbits induced by severance of mossy fiber visual pathway to the cerebellar flocculus. Brain Res 198:210–215

    Article  PubMed  Google Scholar 

  • Money KE, Scott JW (1962) Functions of separate sensory receptors of non-auditory labyrinth of the cat. Am J Physiol 202:1211–1220

    PubMed  Google Scholar 

  • Mowrer OH (1937) The influence of vision during bodily rotation upon the duration of post-rotational vestibular nystagmus. Acta Otolaryngol 25:351–364

    Google Scholar 

  • Muratore R, Zee DS (1979) Pursuit after-nystagmus. Vision Res 19: 1057–1059

    Article  PubMed  Google Scholar 

  • Naegele JR, Held R (1982) The postnatal development of monocular optokinetic nystagmus in infants. Vision Res 22:391–397

    Article  Google Scholar 

  • Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibuloocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53:36–46

    Article  PubMed  Google Scholar 

  • Noda H (1981) Visual mossy fiber inputs to the flocculus of the monkey. In: Cohen B (ed) Vestibular and oculomotorphysiology. Ann NY Acad Sci, vol 374. New York Acad Sci, New York; pp 465–475

    Google Scholar 

  • Noda H, Suzuki DA (1979a) The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. J Physiol (Lond) 294:335–348

    PubMed  Google Scholar 

  • Noda H, Suzuki DA (1979b) Processing of eye movement signals in the flocculus of the monkey. J Physiol (Ldon) 294:349–364

    PubMed  Google Scholar 

  • Noda H, Warabi T (1982) Eye position signals in the flocculus of the monkey during smooth-pursuit eye movements. J Physiol (Lond) 324:187–202

    PubMed  Google Scholar 

  • Ohm J (1933) Über die Beziehungen zwischen willkürlichen, optischen und vestibulären Augenbewegungen. Z Hals-Nasen-Ohrenheilk 32:234–246

    Google Scholar 

  • Paige GD (1983) Vestibulo-ocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. J Neurophysiol 49:134–151

    PubMed  Google Scholar 

  • Pola J, Wyatt HJ (1980) Target position and velocity: the stimuli for smooth pursuit eye movements. Vision Res 20:523–534

    Article  PubMed  Google Scholar 

  • Precht W (1978) Neuronal operations in the vestibular system. In: Braitenberg V (ed) Studies of brain function, vol 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Precht W, Simpson JI, Llinas R (1976a) Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflügers Arch 367:1–6

    Article  Google Scholar 

  • Precht W, Volkind R, Maeda M, Giretti ML (1976b) The effects of stimulating the cerebellar nodulus in the cat on the responses of vestibular neurons. Neurosci 1:301–312

    Article  Google Scholar 

  • Precht W, Cazin L, Blanks R, Lannou J (1982) Anatomy and physiology of the optokinetic pathways to the vestibular nuclei in the rat. In: Roucoux A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. W Junk, The Hague, pp 153–172

    Google Scholar 

  • Precht W, Blanks RHI, Strata P, Montarolo P (1985) On the role of subprimate cerebellar flocculus in the optokinetic reflex and visual-vestibular interaction. In: Cerebellar functions. Bloedel JR, Dichgans J, Precht W (eds) Springer, Berlin, New York, pp 86–108

    Google Scholar 

  • Raphan T, Cohen B (1985) Velocity storage and the ocular response to multidimensional vestibular stimuli. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control. Elsevier, Amsterdam; pp 123–143

    Google Scholar 

  • Raphan T, Cohen B, Matsuo V (1977) A velocity-storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic afternystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Development Neurosci, vol I. Elsevier, Amsterdam; pp 37–47

    Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248

    Article  PubMed  Google Scholar 

  • Raphan T, Cohen B, Henn V (1981) Effects of gravity on rotatory nystagmus in monkeys. In: Cohen B (ed) Vestibular and oculomotor physiology. Ann NY Acad Sci, vol 374. New York Acad Sci, New York; pp 44–55

    Google Scholar 

  • Raphan T, Cohen B, Suzuki J-I, Henn V (1983a) Nystagmus generated by pitch while rotating. Brain Res 276:165–172

    Article  PubMed  Google Scholar 

  • Raphan T, Waespe W, Cohen B (1983b) Labyrinthine activation during rotation about axes tilted from the vertical. Adv Otorhinolaryngol 30:50–53

    PubMed  Google Scholar 

  • Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol (Lond) 159:326

    PubMed  Google Scholar 

  • Reisine H, Simpson JI, Rudinger D, Henn V (1985) Combined anatomical and physiological study of semicircular canal orientation in the rhesus monkey. Soc Neurosci Abstr 11:319

    Google Scholar 

  • Robinson DA (1963) A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans Biomed Electron 10:137–145

    Google Scholar 

  • Robinson DA (1965) The mechanism of human smooth pursuit eye movement. J Physiol (Lond) 180:569

    PubMed  Google Scholar 

  • Robinson DA (1977) Linear addition of optokinetic and vestibular signals in the vestibular nucleus. Exp Brain Res 30:447–450

    Article  PubMed  Google Scholar 

  • Robinson DA (1981a) The use of control systems analysis in the neurophysiology of eye movements. Ann Rev Neurosci 4:463–503

    Article  PubMed  Google Scholar 

  • Robinson DA (1981b) Control of eye movements. In: VB Brooks (ed) Handbook of Physiology, the Nervous System, vol II, part 2. Williams & Wilkins, Baltimore, 1275–1320

    Google Scholar 

  • Robinson DA (1982) A model of cancellation of the vestibulo-ocular reflex. In: Lennerstrand G, Zee DS, Keller EL (eds) Functional basis of ocular motility disorders. Pergamon, Oxford; pp 5–13

    Google Scholar 

  • Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in alert monkey. J Neurophysiol 36:1004–1022

    PubMed  Google Scholar 

  • Roucoux A, Crommelinck M (eds) (1982) Physiological and pathological aspects of eye movements. W Junk, The Hague

    Google Scholar 

  • Rubertone JA, Haines DE (1981) Secondary vestibulocerebellar projections to flocculonodular lobe in a prosimian primate, Galago senegalensis. J Comp Neurol 200:255–272

    Article  PubMed  Google Scholar 

  • Sandeman D (1983) The balance and visual systems of the swimming crab: their morphology and interaction. In: Horn E (ed) Fortschritte der Zoologie: Multimodal convergences in sensory systems. Gustav Fischer, Stuttgart; pp 213–229

    Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1982) Zonal organization of the floccular Purkinje cells projecting to the vestibular nucleus in cats. Brain Res 232:1–15

    Article  PubMed  Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1983a) Afferent projections from the brainstem to the three floccular zones in cats. I. Climbing fiber projections. Brain Res 272:27–36

    Article  PubMed  Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1983b) Afferent projections from the brainstem to the three floccular zones in cats. II. Mossy fiber projections. Brain Res 272:37–48

    Article  PubMed  Google Scholar 

  • Scalia F (1972) The termination of retinal axons in the pretectal region of mammals. J Comp Neurol 145:223–258

    Article  PubMed  Google Scholar 

  • Schaefer K-P, Zierau H, Suss KJ (1977) Differentiation of neuronal activity in the vestibular nuclei of rabbits. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Dev Neurosci I. Amsterdam, Elsevier; pp 257–260

    Google Scholar 

  • Schneider LW, Anderson DJ (1976) Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res 112:61–76

    Article  PubMed  Google Scholar 

  • Schrader V, Koenig E, Dichgans J (1985) The effect of lateral head tilt on horizontal postrotatory nystagmus I and II and the Purkinje effect. Acta Otolaryngol 100:98–105

    PubMed  Google Scholar 

  • Schuknecht HF (1982) Behavior of the vestibular nerve following labyrinthectomy. Ann Otol Rhino Laryngol (Suppl) 91:16–32

    Google Scholar 

  • Segal BN, Liben S (1985) Modulation of human velocity storage sampled during intermittently-illuminated optokinetic stimulation. Exp Brain Res 59:515–523

    PubMed  Google Scholar 

  • Shimazu H, Precht W (1965) Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J Neurophysiol 28:991–1013

    PubMed  Google Scholar 

  • Shimazu H, Precht W (1966) Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J Neurophysiol 29:989–1013

    Google Scholar 

  • Shinoda Y Yoshida K (1974) Dynamic characteristics of responses to horizontal head angular acceleration in vestibuloocular pathway in the cat. J Neurophysiol 37:653–673

    PubMed  Google Scholar 

  • Simpson JI (1984) The accessory optic system. Ann Rev Neurosci 7:13–41

    Article  PubMed  Google Scholar 

  • Simpson JI, Graf W (1985) The selection of reference frames by nature and its investigators. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control — facts and theories. Rev Oculomotor Res, vol 1. Elsevier, Amsterdam; pp 3–16

    Google Scholar 

  • Singleton GT (1967) Relationships of the cerebellar nodulus to vestibular function: a study of the effects of nodulectomy on habituation. Laryngoscope 77:1579–1620

    PubMed  Google Scholar 

  • Sirkin DW, Precht W, Courjon JH (1984) Initial, rapid phase of recovery from unilateral vestibular lesion in rat not dependent on survial of central portion of vestibular nerve. Brain Res 302:245–256

    Article  PubMed  Google Scholar 

  • Skavenski AA, Robinson DA (1973) Role of abducens neurons in vestibuloocular reflex. J Neurophysiol 36:724–738

    PubMed  Google Scholar 

  • Smith E (1903) On the morphology of the brain in the mammalia, with special reference to that of the Lemurs, recent and extinct. Trans Linnean Soc 8:319

    Google Scholar 

  • Spiegel EA, Scala NP (1942) Position nystagmus in cerebellar lesions. J Neurophysiol 5:247–260

    Google Scholar 

  • Steiger J-J, Büttner-Ennever JA (1979) Oculomotor nucleus afferents in the monkey demonstrated with hoseradish peroxidase. Brain Res 160:1–15

    Article  PubMed  Google Scholar 

  • Steinbach MJ (1976) Pursuing the perceptual rather than the retinal stimulus. Vision Res 16:1371

    Article  PubMed  Google Scholar 

  • Steinman RM, Cushman WB, Martins AJ (1982) The precision of gaze. Human Neurobiol 1:97–109

    Google Scholar 

  • Stroud BB (1895) The mammalian cerebellum. J Comp Neurol 5:71–118

    Article  Google Scholar 

  • Suzuki DA, Keller DA (1982) Vestibular signals in the posterior vermis of the alert monkey cerebellum. Exp Brain Res 47:145–147

    Article  PubMed  Google Scholar 

  • Suzuki DA, Keller EL (1984) Visual signals in the dorsolateral pontine nucleus of the alert monkey: their relationship to smooth-pursuit eye movements. Exp Brain Res 53:473–478

    Article  PubMed  Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eve movement-related activity in posterior vermis of monkey cerebellum. 46:1120–1139

    Google Scholar 

  • Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72:213–224

    Article  PubMed  Google Scholar 

  • Tauber ES, Atkin A (1968) Optomotor responses to monocular stimulation: relation to visual system organization. Science 160:1365–1367

    PubMed  Google Scholar 

  • Ter Braak JWG (1936) Untersuchungen über optokinetischen Nystagmus (translated “Investigations on optokinetic nystagmus” In: Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. Studies of brain function, vol 5. Springer, Berlin Heidelberg New York) Arch Neerl Physiol 21:309–376

    Google Scholar 

  • Tomlinson RD, Robinson DA (1984) Signals in vestibular nucleus mediating vertical eye movements in the monkey. J Neurophysiol 51:1121–1136

    PubMed  Google Scholar 

  • Uemura T, Cohen B (1973) Effects of vestibular nuclei lesions on vestibulo-ocular reflexes and posture in monkeys. Acta Otolaryngol (Suppl) (Stockh) 315:1–71

    Google Scholar 

  • Van Die G, Collewijn H (1982) Optokinetic nystagmus in man. Human Neurobiol 1:111–119

    Google Scholar 

  • Viirre E, Tweed D, Milner K, Vilis T (1986) A re-examination of the gain of the vestibulo-ocular reflex. J Neurophysiol 56:439–450

    PubMed  Google Scholar 

  • Waespe W, Cohen B (1983) Effects of flocculectomy on unit activity in the vestibular nuclei during visual-vestibular interactions. Exp Brain Res 51:23–35

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1977a) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27:523–538

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1977b) Vestibular nuclei activity during optokinetic after-nystagmus (OKAN) in the alert monkey. Exp Brain Res 30:323–330

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1978a) Reciprocal changes in primary and secondary optokinetic after-nystagmus (OKAN) produced by repetitive optokinetic stimulation in the monkey. Arch Psychiatr Nervenkr 225:23–30

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1978b) Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkey. Exp Brain Res 33:203–211

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1979) The velocity response of vestibular nucleus neurons during vestibular, visual, and combined angular acceleration. Exp Brain Res 37:337–347

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. II. Purkinje cell activity. Exp Brain Res 43:349–360

    PubMed  Google Scholar 

  • Waespe W, Henn V (1985) Cooperative functions of vestibular nuclei neurons and floccular Purkinje cells in the control of nystagmus slow phase velocity: single cell recordings and lesion studies in the monkey. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control — facts and theories. Elsevier, Amsterdam; pp 233–250

    Google Scholar 

  • Waespe W, Schwarz U (1986) Characteristics of eye velocity storage during periods of suppression and reversal of eye velocity in monkeys. Exp Brain Res 65:49–58

    Article  PubMed  Google Scholar 

  • Waespe W, Wolfensberger M (1985) Optokinetic nystagmus (OKN) and optokinetic after-responses after bilateral vestibular neurectomy in the monkey. Exp Brain Res 60:263–269

    PubMed  Google Scholar 

  • Waespe W, Henn V, Miles TS (1977) Activity in the vestibular nuclei of the alert monkey during spontaneous eye movements and vestibular or optokinetic stimulation. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons, Dev Neurosci, vol 1. Elsevier, Amsterdam; pp 269–278

    Google Scholar 

  • Waespe W, Huber T, Henn V (1978) Dynamic changes of optokinetic afternystagmus (OKAN) caused by brief visual fixation periods in monkey and man. Arch Psychiatr Nervenkr 226:1–10

    Article  PubMed  Google Scholar 

  • Waespe W, Henn V, Isoviita V (1980) Nystagmus slow-phase velocity during vestibular, optokinetic, and combined stimulation in the monkey. Arch Psychiatr Nervenkr 228:275–286

    Article  PubMed  Google Scholar 

  • Waespe W, Büttner U, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. I. Input activity. Exp Brain Res 43:337–348

    PubMed  Google Scholar 

  • Waespe W, Cohen B, Raphan T (1983) Role of the flocculurs and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50:9–33

    Article  PubMed  Google Scholar 

  • Waespe W, Cohen B, Raphan T (1985a) Dynamic modification of the vestibuloocular reflex by the nodulus and uvula. Science 228:199–202

    PubMed  Google Scholar 

  • Waespe W, Rudinger D, Wolfensberger M (1985b) Purkinje cell activity in the flocculus of vestibular neurectomized and normal monkeys during optokinetic nystagmus (OKN) and smooth pursuit movements. Exp Brain Res 60:243–262

    PubMed  Google Scholar 

  • Walberg F, Bowsher D, Brodal A (1958) The termination of primary vestibular fibers in the vestibular nuclei in the cat: an experimental study with silver methods. J Comp Neurol 110:391–419

    Article  PubMed  Google Scholar 

  • Weber JT (1985) Pretectal complex and accessory optic system of primates. Brain Behav Evol 26:117–140

    PubMed  Google Scholar 

  • Weber JT, Giolli RA (1986) The medial terminal nucleus of the monkey: evidence for a “complete” accessory optic system. Brain Res 365:164–168

    Article  PubMed  Google Scholar 

  • Westheimer G, Blair SM (1974) Functional organization of primate oculomotor system revealed by cerebellectomy. Exp Brain Res 21:463–472

    Article  PubMed  Google Scholar 

  • Westheimer G, McKee SP (1975) Visual acuity in the presence of retinal-image motion. J Opt Soc Am 65:847–850

    PubMed  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum, New York

    Google Scholar 

  • Wilson VJ, Kato M, Thomas RC, Peterson BW (1966) Excitation of lateral vestibular neurons by peripheral afferent fibers. J Neurophysiol 29:508–529

    PubMed  Google Scholar 

  • Winterson BJ, Steinman RM (1978) The effect of luminance on human smooth pursuit perifoveal and foveal targets. Vision Res 18:1165–1172

    Article  PubMed  Google Scholar 

  • Wurtz RH, Goldberg ME, Robinson DL (1982) Brain mechanisms of visual attention. Sci American 246:100–107

    Google Scholar 

  • Yasui S, Young LR (1975) Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190:906–908

    PubMed  Google Scholar 

  • Yingcharoen K, Rinvik K (1983) Ultrastructural degeneration of a projection from the flocculus to the nucleus prepositus hypoglossi in the cat. Exp Brain Res 51:192–198

    Article  PubMed  Google Scholar 

  • Young LR (1977) Pursuit eye movement — what is being pursued? In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in Neurosci, vol 1. Elsevier, Amsterdam; pp 29–36

    Google Scholar 

  • Young LR, Henn V (1975) Nystagmus produced by pitch and yaw rotation of monkeys about non-vertical axes. Fortschr Zool 23:235–246

    PubMed  Google Scholar 

  • Zee DS, Yamazaki A, Butler PH, Gueçer G (1981) Effect of ablation of flocculus and paraflocculus on eye movements in primate. J Neurophysiol 46:878–899

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this chapter

Cite this chapter

Waespe, W., Henn, V. (1987). Gaze stabilization in the primate. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 106. Reviews of Physiology, Biochemistry and Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027575

Download citation

  • DOI: https://doi.org/10.1007/BFb0027575

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17608-4

  • Online ISBN: 978-3-540-47713-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics