Skip to main content

Factors involved in the physiological regulation of the cerebral circulation

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 101

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 101))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud FM (1981) Special characteristics of the cerebral circulation. Fed Proc 40:2296–2300

    Google Scholar 

  • Abraham WC, Delanay RL, Dunn AJ, Zornetzer SF (1979) Locus coeruleus stimulation decreases deoxyglucose uptake in ipsilateral mouse cerebral cortex. Brain Res 172:387–392

    Google Scholar 

  • Alm A, Bill A (1973) The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. Acta Physiol Scand 88:84–94

    Google Scholar 

  • Amano T, Meyer JS (1981) Prostaglandin and human CBF control: effect of aspirin and indomethacin. J Cereb Blood Flow Metab 1:S403–S404

    Google Scholar 

  • Armstrong ML, Heistad DD, Marcus ML, Piegors DG, Abboud FM (1983) Hemodynamic sequelae of regression of experimental atherosclerosis. J Clin Invest 71:104–113

    Google Scholar 

  • Astrup J, Heuser D, Lasser NA, Nilsson B, Nordberg K, Siesjö BK (1976) Evidence against H+ and K+ as the main factors in the regulation of cerebral blood flow during epileptic discharges, acute hypoxia, amphetamine intoxication, and hypoglycemia. A microelectrode study. In: Betz E (ed) Ionic actions on vascular smooth muscle. Springer, Berlin Heidelberg New York, pp 110–115

    Google Scholar 

  • Astrup J, Heuser D, Lasser NA, Nilsson B, Nordberg K, Siesjö BK (1979) Evidence against H+ and K+ as main factors for the control of cerebral blood flow: A microelectrode study. Ciba Found Symp 56:313–332

    Google Scholar 

  • Aubineau P, Sercombe R, Seylez J (1980) Parasympathetic influence of carbachol on local cerebral blood flow in the rabbit by a direct vasodilator action and an inhibition of the sympathetic mediated vasoconstriction. Br J Pharmacol 68:449–459

    Google Scholar 

  • Auer LM, Johansson BB, Lund S (1981) Reaction of pial arteries and veins to sympathetic stimulation in the cat. Stroke 12:528–531

    Google Scholar 

  • Barry DI, Strandgaard S, Graham DI, Brandstrup O, Svendsen UG, Vorstrup S, Hemmingsen R, Bolwig TG (1982) Cerebral blood flow in rats with renal and spontaneous hypertension: Resetting of the lower limit of autoregulation. J Cereb Blood Flow Metab 2:347–354

    Google Scholar 

  • Barry DI, Vorstrup S, Jarden JO, Graham DI, Svendsen UG, Brandstrup O, Strandgaard S (1983) Chronic antihypertensive treatment normalizes autoregulation of cerebral blood flow in hypertension. J Cereb Blood Flow Metab 3 (Suppl 1):S656–S657

    Google Scholar 

  • Bates DB, Sundt TM Jr (1976) The relevance of peripheral baroreceptors and chemoreceptors to regulation of cerebral blood flow in the cat. Circ Res 38:488–493

    Google Scholar 

  • Baumbach GL, Heistad DD (1983) Effects of sympathetic stimulation and changes in arterial pressure on segmented resistance of cerebral vessels in rabbits and cats. Circ Res 52:527–533

    Google Scholar 

  • Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    Google Scholar 

  • Betz E (1972) Cerebral blood flow: its measurement and regulation. Physiol Rev 52:595–630

    Google Scholar 

  • Betz E, Csornai M (1978) Action and interaction of perivascular H+, K+ and Ca++ on pial arteries. Pflügers Arch 374:67–72

    Google Scholar 

  • Bevan AT, Honour AJ, Stott FH (1969) Direct arterial pressure recording in unrestricted man. Clin Sci 36:329–344

    Google Scholar 

  • Bevan JA (1979) Sites of transition between functional systemic and cerebral arteries occur at embryological functional sites. Science 204:635–637

    Google Scholar 

  • Bevan JA (1983) Diltiazem selectively inhibits cerebrovascular extrinsic but not intrinsic myogenic tone. A review. Circ Res 52 (Suppl 1):104–108

    Google Scholar 

  • Bevan JA, Bevan RD (1977) Sympathetic control of the rabbit basilar artery. In: Owman C, Edvinsson L (eds) Neurogenic control of the brain circulation. Pergamon, Oxford, pp 285–293

    Google Scholar 

  • Bevan JA, Duckles SP, Lee TJF (1975) Histamine potentiation of nerve-and drug-induced responses of rabbit cerebral artery. Circ Res 36:647–653

    Google Scholar 

  • Bevan JA, Buga GM, Florence VM, Gonsalves A, Snowden A (1982a) Distribution of choline acetyl transferase in cerebral and extracerebral cranial arteries of the cat: its relationship to neurogenic atropine-sensitive dilation. Circ Res 50:470–476

    Google Scholar 

  • Bevan JA, Buga GM, Snowden A, Said SI (1982b) Is the neural vasodilator mechanism to cerebral and extracerebral arteries the same? In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effect of nerves and neurotransmitters. Elsevier, New York, pp 421–430

    Google Scholar 

  • Bevan RD, Tsuru H, Bevan JA (1983) Cerebral artery mass in the rabbit is reduced by chronic sympathetic denervation. Stroke 14:393–398

    Google Scholar 

  • Bill A (1979) Effects of indomethacin on regional blood flow in conscious rabbits — a microsphere study. Acta Physiol Scand 105:437–442

    Google Scholar 

  • Bill A, Linder J (1976) Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96:114–121

    Google Scholar 

  • Bloom SR, Edwards AV (1980) Vasoactive intestinal peptide in relation to atropine resistant vasodilation in the submaxillary gland of the cat. J Physiol (Lond) 300:41–53

    Google Scholar 

  • Boisvert DPJ, Jones JV, Harper AM (1977) Cerebral blood flow autoregulation to acutely increasing blood pressure during sympathetic stimulation. In: Ingvar DH, Lassen NA (eds) Cerebral function, metabolism, and circulation. Munksgaarde, Copenhagen, pp 46–47

    Google Scholar 

  • Borgstrom L, Johansson H, Siesjö BK (1975) The relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand 93:423–432

    Google Scholar 

  • Bradbury MWB, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of rabbits. Am J Physiol 240:F329–F336

    Google Scholar 

  • Busija DW (1983a) Role of prostaglandins in the response of the cerebral circulation to carbon dioxide in awake rabbits. J Cereb Blood Flow Metab 3:276–280

    Google Scholar 

  • Busija DW (1983b) Effects of unilateral and bilateral sympathetic stimulation on cerebral blood flow in rabbits. Physiologist 26:A92 (abstract)

    Google Scholar 

  • Busija DW (1984a) Sympathetic nerves reduce cerebral blood flow during hypoxia in awake rabbits. Am J Physiol 247 (Sept) (to be published)

    Google Scholar 

  • Busija DW (1984b) Role of prostaglandins in modulating sympathetic vasoconstriction in the cerebral circulation in anesthetized rabbits. J Cereb Blood Flow Metab (to be published)

    Google Scholar 

  • Busija DW, Heistad DD (1981) Effects of cholinergic nerves on cerebral blood flow in cats. Circ Res 48:62–69

    Google Scholar 

  • Busija DW, Heistad DD (1982) Atropine does not attenuate cerebral vasodilation during hypercapnia. Am J Physiol 11:H683–H687

    Google Scholar 

  • Busija DW, Heistad DD (1983) Effects of indomethacin on cerebral blood flow during hypercapnia in cats. Am J Physiol 244:H519–H524

    Google Scholar 

  • Busija DW, Heistad DD (1984) Effects of activation of sympathetic nerves on cerebral blood flow during hypercapnia in cats and rabbits. J Physiol (Lond) 347:35–45

    Google Scholar 

  • Busija DW, Heistad DD, Marcus ML (1980a) Effects of sympathetic nerves on cerebral vessels during acute, moderate increases in arterial pressure in dogs and cats. Circ Res 46:696–702

    Google Scholar 

  • Busija DW, Orr JA, Rankin JHG, Liang HK, Wagerle LC (1980b) Cerebral blood flow during normocapnic hyperoxia in the unanesthetized pony. J Appl Physiol 48:10–15

    Google Scholar 

  • Busija DW, Heistad DD, Marcus ML (1981) Continuous measurement of cerebral blood flow in anesthetized cats and dogs. Am J Physiol 241:H228–H234

    Google Scholar 

  • Busija DW, Marcus ML, Heistad DD (1982a) Effects of sympathetic nerves on pial artery diameter and blood flow velocity in cats. J Cereb Blood Flow Metab 2:363–367

    Google Scholar 

  • Busija DW, Sadoshima S, Marcus ML, Heistad DD (1982b) Functional significance of sympathetic innervation of cerebral vessels. Can the issue now be resolved? In: Kalsner S (ed) Trends in autonomic pharmacology. Urban and Schwarzenberg, Baltimore, pp 187–204

    Google Scholar 

  • Cameron IR, Caronna J (1976) The effect of local changes in potassium and bicarbonate concentration on hypothalamic blood flow in the rabbit. J Physiol (Lond) 262:415–430

    Google Scholar 

  • Carpenter MB (1978) Core text of neuroanatomy. Williams and Wilkins, Baltimore, pp 317–340

    Google Scholar 

  • Caspers H, Speckmann EJ (1972) Cerebral pO2, pCO2 and pH: Changes during convulsive activity and their significance for spontaneous arrest of seizures. Epilepsia 13:699–725

    Google Scholar 

  • Chan-Palay V (1977) Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P and neurotensin fibers and the leptomeningeal indoleamine axons: their roles in vasomotor activity and local alterations of brain blood composition. In: Owman C, Edvinsson L (eds) Neurogenic control of brain circulation. Pergamon, Oxford, pp 39–53

    Google Scholar 

  • Chapman AG, Meldruni BS, Siesjö BK (1977) Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem 28:1025–1035

    Google Scholar 

  • Chorobski J, Penfield W (1932) Cerebral vasodilator nerves and their pathway from the medulla oblongata. Arch Neurol Psychiatry 28:1257–1289

    Google Scholar 

  • Cobb S, Finesinger JE (1932) Cerebral circulation XIX. The vagal pathway of the vasodilator impulse. Arch Neurol Psychiatry 28:1234–1256

    Google Scholar 

  • Craigen ML, Jennett S (1981) Pial arterial response to systemic hypoxia in anesthetized cats. J Cereb Blood Flow Metab 1:285–296

    Google Scholar 

  • Crockard HA, Iannotti F, Ladds G (1982) Cerebrovascular effects of prostaglandin inhibitors in the gerbil. J Cereb Blood Flow Metabol 2:67–72

    Google Scholar 

  • Dahlgren N, Ingvar M, Yokayama H, Siesjö BK (1981a) Effect of indomethacin on local cerebral blood flow in awake, minimally restrained cats. J Cereb Blood Flow Metab 1:233–236

    Google Scholar 

  • Dahlgren N, Lindvall O, Sakabe T, Steneni U, Siesjö BK (1981b) Cerebral blood flow and oxygen consumption in the rat brain after lesions of the noradrenergic locus coeruleus system. Brain Res 209:11–23

    Google Scholar 

  • Dahlgren N, Nilsson B, Sakabe T, Siesjö BK (1981c) The effect of indomethacin on cerebral blood flow and oxygen consumption in the rat at normal and increased carbon dioxide tensions. Acta Physiol Scand 111:475–485

    Google Scholar 

  • D'Alecy LG, Feigl EO (1972) Sympathetic control of cerebral blood flow in dogs. Circ Res 31:267–283

    Google Scholar 

  • D'Alecy LG, Rose CJ (1977) Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res 41:324–331

    Google Scholar 

  • D'Alecy LG, Rose CJ, Sellers SA (1979) Sympathetic modulation of hypercapnic cerebral vasodilation in dogs. Circ Res 45:771–785

    Google Scholar 

  • Davson H (1967) Physiology of the cerebrospinal fluid. Churchill, London, pp 183–184

    Google Scholar 

  • De La Torre JC, Mullen S (1971) Experimental evaluation of L-dopa penetration in brain. Trans Am Neurol Assoc 96:227–229

    Google Scholar 

  • Des Rosiers MH, Kennedy C, Sakurada O, Shinohara M, Sokoloff L (1978) Effects of hypercapnia on cerebral oxygen and glucose consumption in the conscious rat. Stroke 9:98 (Abstract)

    Google Scholar 

  • Diepstra G, Gonylea W, Mitchell JH (1980) Cardiovascular response to static exercise during selective autonomic blockade in the conscious cat. Circ Res 47:530–535

    Google Scholar 

  • Duckles SP (1979) Neurogenic dilator and constrictor responses of pial arteries in vitro. Differences between dogs and sheep. Circ Res 44:482–490

    Google Scholar 

  • Duckles SP (1981a) Vasodilator innervation of cerebral blood vessels. In: Vanhoutte PM, Leusen I (eds) Vasodilatation. Raven, New York, pp 27–38

    Google Scholar 

  • Duckles SP (1981b) Evidence for a functional cholinergic innervation of cerebral arteries. J Pharmacol Exp Ther 217:544–548

    Google Scholar 

  • Duckles SP (1981c) Evidence against a physiological role for presynaptic acetylcholine receptors on cerebrovascular adrenergic nerves. Fed Proc 40:421 (Abstract)

    Google Scholar 

  • Duckles SP (1982a) Acetylcholine and vasoactive intestinal polypeptide: Cerebrovascular neurotransmitters? In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier North Holland, New York, pp 441–446

    Google Scholar 

  • Duckles SP (1982b) Choline acetyltransferase in cerebral arteries: modulator of amino acid uptake? J Pharmacol Exp Ther 223:716–720

    Google Scholar 

  • Duckles SP, Bevan JA (1976) Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vitro. J Pharmacol Exp Ther 197:371–378

    Google Scholar 

  • Duckles SP, Bevan JA (1979) Responses of small rabbit pial arteries in vitro. Blood Vessels 16:80–86

    Google Scholar 

  • Duckles SP, Buck SH (1982) Substance P in the cerebral vasculature: depletion by capsaicin suggests a sensory role. Brain Res 245:171–174

    Google Scholar 

  • Duckles SP, Rapoport R (1979) Release of endogenous norepinephrine from a rabbit cerebral artery. J Pharmacol Exp Ther 211:219–224

    Google Scholar 

  • Duckles SP, Lee TJF, Bevan JA (1977) Cerebral arterial responses to nerve stimulation in vitro. Species variation in the constrictor and dilator components. In: Owman C, Edvinsson L (eds) Neurogenic control of the brain circulation. Pergamon, Oxford, pp 133–142

    Google Scholar 

  • Duffy TE, Carazzuti M, Cruz NF, Sokoloff L (1982) Local cerebral glucose metabolism in newborn dogs: effects of hypoxia and halothane anesthesia. Ann Neurol 11:233–246

    Google Scholar 

  • Edvinsson L (1975) Neurogenic mechanism in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects in cerebral blood flow. Acta Physiol Scand (Suppl) 427:1–36

    Google Scholar 

  • Edvinsson L, MacKenzie ET (1977) Amine mechanism in the cerebral circulation. Pharmacol Rev 28:275–348

    Google Scholar 

  • Edvinsson L, Owman Ch (1974) Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor response of cerebral arteries in vitro. Circ Res 35:835–849

    Google Scholar 

  • Edvinsson L, Owman Ch (1977) Sympathetic innervations and adrenergic receptors in intraparenchymal cerebral arteries of baboon. In: Ingvar DH, Lasser NA (eds) Proceedings of the 8th international symposium on cerebral function, metabolism and circulation. Munksgaarde, Copenhagen, pp 304–305

    Google Scholar 

  • Edvinsson L, Owman C, West KA (1971) Changes in cerebral blood volume of mice at various time-periods after superior cervical sympathectomy. Acta Physiol Scand 82:521–526

    Google Scholar 

  • Edvinsson L, Nielsen KC, Owman CH, Sporrong B (1972a) Cholinergic mechanisms in pial vessels. Z Zellforsch 134:311–325

    Google Scholar 

  • Edvinsson L, Owman Ch, Rosengrent E, West KA (1972b) Concentration of noradrenaline in pial vessels, choroid plexus, and iris during 2 weeks after sympathetic ganglionectomy or decentralization. Acta Physiol Scand 85:201–206

    Google Scholar 

  • Edvinsson L, Lindvall M, Nielsen KC, Owman C (1973) Are brain vessels innervated also by central (non-sympathetic) adrenergic neurones? Brain Res 63:396–499

    Google Scholar 

  • Edvinsson L, Nielsen KC, Owman C, West KA (1974) Adrenergic innervation of the mammalian choroid plexus. Am J Anat 139:299–308

    Google Scholar 

  • Edvinsson L, Hakanson M, Lindvall M, Owman Ch, Svensson KG (1975) Ultrastructural and biochemical evidence for a sympathetic neural influence on the choroid plexus. Exp Neurol 48:241–251

    Google Scholar 

  • Edvinsson L, Owman C, Siesjö B (1976a) Physiological role of cerebrovascular sympathetic nerves in the autoregulation of cerebral blood flow. Brain Res 117:518–523

    Google Scholar 

  • Edvinsson L, Owman C, Sjoberg NO (1976b) Autonomic nerves, mast cells and amine receptors in human brain vessels; A histochemical and pharmacological study. Brain Res 115:337–393

    Google Scholar 

  • Edvinsson L, Falck B, Owman Ch (1977) Possibilities for a cholinergic action on smooth musculature and on sympathetic axons in brain vessels mediated by muscarinic and nicotinic receptors. J Pharmacol Exp Ther 200:117–126

    Google Scholar 

  • Edvinsson L, Fahrenkrug J, Hanko J, Owman Ch, Sundler F, Uddman R (1980) VIP nerve supply of intracranial arteries of mammals. Cell Tissue Res 208:135–142

    Google Scholar 

  • Edvinsson L, McCulloch J, Uddman R (1981) Substance P: immunohistochemical localization and effect upon pial arteries in vitro and in situ. J Physiol (Lond) 318:251–258

    Google Scholar 

  • Eklöf B, MacMillan V, Siesjö BK (1972) Cerebral energy state and cerebral venous pO2 in experimental hypotension caused by bleeding. Acta Physiol Scand 86:515–527

    Google Scholar 

  • Ellis EF, Wei EP, Cockrell CS, Traweek DL, Saady JJ, Kontos HA (1982) The effect of O2 and CO2 on prostaglandin levels in the cat cerebral cortex. Circ Res 51:652–656

    Google Scholar 

  • Emerson TB Jr, Raymond RM (1981) Involvement of adenosine in cerebral hypoxic hyperemia in the dog. Am J Physiol 241:H134–H138

    Google Scholar 

  • Eriksson S, Hagenfeldt L, Law D, Patrono C, Pinca E, Wennmalm A (1983) Effect of prostaglandin synthesis inhibitors on basal and CO2-stimulated cerebral blood flow in man. Acta Physiol Scand 117:203–211

    Google Scholar 

  • Farrar JK, Jones JV, Graham DI, Strandgaard S, MacKenzie ET (1976) Evidence against cerebral vasospasm during acutely induced hypertension. Brain Res 104:176–180

    Google Scholar 

  • Fitch W, MacKenzie ET, Hasper AM (1975) Effects of decreasing arterial blood pressure in cerebral blood flow in the baboon. Circ Res 37:550–557

    Google Scholar 

  • Florence VM, Bevan JA (1979) Biochemical determinations of cholinergic innervation in cerebral arteries. Circ Res 45:217–218

    Google Scholar 

  • Flower RJ (1974) Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev 26:33–67

    Google Scholar 

  • Folkow B, Neil E (1971) Circulation. Oxford University Press, New York, p 46

    Google Scholar 

  • Foreman DL, Sanders M, Bloor CM (1976) Total and regional cerebral blood flow during moderate and severe exercise in miniature swine. J Appl Physiol 40:191–195

    Google Scholar 

  • Fujiwara S, Itoh T, Suzuki H (1982) Membrane properties and excitatory neuromuscular transmission in the smooth muscle of dog cerebral arteries. Br J Pharmacol 77:197–208

    Google Scholar 

  • Futamachi KJ, Mutani R, Prince DA (1974) Potassium activity in rabbit cortex. Brain Res 75:5–25

    Google Scholar 

  • Galvan M, Ten Bruggencate G, Senekowitsch R (1979) The effects of neuronal stimulation and ouabain upon extracellular K+ and C2+ levels in rat isolated sympathetic ganglia. Brain Res 160:544–548

    Google Scholar 

  • Gotoh F, Tazaki Y, Meyer JS (1961) Transport of gases through brain and their extravascular vasomotor action. Exp Neurol 4:48–58

    Google Scholar 

  • Gotoh F, Muramatsu F, Fukuuchi Y, Okayasu H, Tanaka K, Suzuki N, Kobari M (1982) Video camera method for simultaneous measurement of blood flow velocity and pial vessel diameters. J Cereb Blood Flow Metab 2:421–428

    Google Scholar 

  • Graham DI, Grome JJ, Kelly PAT, MacKenzie ET, McCulloch J, Reis DJ, Talman WT (1982) Cerebral circulatory effect of fulminating neurogenic hypertension. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves on neurotransmitters. Elsevier North Holland, New York, pp 493–502

    Google Scholar 

  • Gross PM, Heistad DD, Strait MR, Marcus ML, Brody MJ (1979) Cerebral vascular responses to physiological stimulation of sympathetic pathways in cats. Circ Res 44:288–294

    Google Scholar 

  • Gross PM, Marcus ML, Heistad DD (1980) Regional distribution of cerebral blood flow during exercise in dogs. J Appl Physiol 48:213–217

    Google Scholar 

  • Gross PM, Harper AM, Teasdale GM (1981a) Cerebral circulation and histamine 1. Participation of vascular H1-and H2-receptors in vasodilatatory responses to carotid arterial infusion. J Cereb Blood Flow Metabol 1:97–108

    Google Scholar 

  • Gross PM, Harper AM, Grahm DI (1981b) Cerebral blood flow in rats during physiological and humoral stimuli. Stroke 12:345–352

    Google Scholar 

  • Gross PM, Reasdale GM, Angersen WJ, Harper AM (1982) Intra-arterial histamine increases blood-brain transport in rats. Am J Physiol 234:H307–H317

    Google Scholar 

  • Gross PM, Harper AM, Reasdale GM (1983) Interaction of histamine with noradrenergic constrictory mechanisms in cat cerebral arteries and veins. Can J Physiol Pharmacol 61:756–763

    Google Scholar 

  • Häggendal E, Johansson B (1965) Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs. Acta Physiol Scand 66 (Suppl 2–8):27–53

    Google Scholar 

  • Hanley DF, Wilson DA, Traystman RJ (1983) Cerebral regions without hypoxic or hypercapnic responses. J Cereb Blood Flow Metab 3:S632–S633

    Google Scholar 

  • Hardebo JE (1981) Vasodilation augments the blood-brain barrier lesions induced by an acute rise in introcarotid pressure. Blood Vessels 18:9–15

    Google Scholar 

  • Hardebo JE, Owman C (1980) Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann Neurol 8:1–11

    Google Scholar 

  • Hardebo JE, Lindvall O, Nilsson B (1982) On the possible influence of adrenergic and cholinergic mechanisms in normo-and hypercapnia. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effect of nerves and neurotransmitters. Elsevier, New York, pp 377:384

    Google Scholar 

  • Harder DR (1980) Comparison of electrical properties of middle cerebral and mesenteric artery in the cat. Am J Physiol 239:C23–C26

    Google Scholar 

  • Harder DR, Abel PW, Hermsmeyer K (1981) Membrane electrical mechanism of basilar artery constriction and pial artery dilation by norepinephrine. Circ Res 49:1237–1242

    Google Scholar 

  • Harper AM (1966) Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex. J Neurol Neurosurg Psychiatry 29:398–403

    Google Scholar 

  • Harper AM, Bell RA (1963) The effect of metabolic acidosis and alkalosis on the blood flow through cerebral cortex. J Neurol Neurosurg Psychiatry 26:341–344

    Google Scholar 

  • Harper AM, Deshmukh WD, Rowman JO, Jennett WB (1972) The influence of sympathetic nervous activity on cerebral blood flow. Arch Neurol 27:1–6

    Google Scholar 

  • Hart M, Heistad DD, Brody MJ (1980) Effect of chronic hypertension and sympathetic denervation on wall-lumen ratio of cerebral arteries. Hypertension 2:419–423

    Google Scholar 

  • Hartman BK, Zide D, Udenfriend D (1972) The use of dopamine beta hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc Natl Acad Sci USA 69:2722–2726

    Google Scholar 

  • Hartman BK, Swanson LW, Raichle ME, Preskorn SH, Clark HB (198) Central adrenergic regulation of cerebral microvascular permeability and blood flow; anatomic and physiologic evidence. Adv Exp Biol Med 131:113–126

    Google Scholar 

  • Haywood JR, Vogh BP (1979) Some measurements of autonomic nervous system influence on production of cerebrospinal fluid in the cat. J Pharmacol Exp Ther 208–341–346

    Google Scholar 

  • Hegedus SA, Shackelford RT (1965) A comparative-anatomical study of the cranial-cervical venous systems in mammals, with special reference to the dog: relationship of anatomy to measurements of cerebral blood flow. Am J Anat 116:375–386

    Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243

    Google Scholar 

  • Heistad DD, Marcus ML (1976) Total and regional cerebral blood flow during stimulation of carotid baroreceptors. Stroke 7:239–243

    Google Scholar 

  • Heistad DD, Marcus ML (1978) Evidence that neural mechanisms do not have important effects on cerebral blood flow. Circ Res 42:295–302

    Google Scholar 

  • Heistad DD, Marcus ML (1979) Effect of sympathetic stimulation on permeability of the blood-brain barrier to albumin during acute hypertension in cats. Circ Res 45:331–338

    Google Scholar 

  • Heistad DD, Marcus ML, Ehrhardt JC, Abboud FM (1976) Effect of stimulation of carotid chemoreceptors on total and regional recebral blood flow. Circ Res 38:20–25

    Google Scholar 

  • Heistad DD, Marcus ML, Sandberg S, Abboud FM (1977) Effect of sympathetic nerve stimulation on cerebral blood flow and on large cerebral arteries of dog. Circ Res 41:342–350

    Google Scholar 

  • Heistad DD, Marcus ML, Abboud FM (1978a) Role of large arteries in regulation of cerebral blood flow in dogs. J Clin Invest 62:761–768

    Google Scholar 

  • Heistad DD, Marcus ML, Gross PM (1978b) Effects of sympathetic nerves on cerebral vessels in dog, cat, and monkey. Am J Physiol 235:H544–H552

    Google Scholar 

  • Heistad DD, Marcus ML, Said SI, Gross PM (1980a) Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am J Physiol 239:H73–H80

    Google Scholar 

  • Heistad DD, Marcus ML, Piegors DJ, Armstrong ML (1980b) Regulation of cerebral blood flow in atherosclerotic monkeys. Am J Physiol 239:H539–H544

    Google Scholar 

  • Heistad DD, Gross PM, Busija DW, Marcus ML (1980c) Cerebral vascular response to loading and unloading of arterial baroreceptors. In: Sleight P (ed) Arterial baroreceptors and hypertension. Oxford, Oxford, pp 210–217

    Google Scholar 

  • Heistad DD, Marcus ML, Gourley JK, Busija DW (1981) Effect of adenosine and dipyridamole on cerebral blood flow. Am J Physiol 9:H775–H780

    Google Scholar 

  • Hernandez MJ, Brennan RW, Bowman GS (1980) Autoregulation of cerebral blood flow in the newborn dog. Brain Res 184:199–202

    Google Scholar 

  • Heuser D (1979) The significance of cortical extracellular H+, K+ and Ca2+ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity. In: Purves MJ (ed) Cerebral vascular smooth muscle and its control. Elsevier, Amsterdam, pp 339–349

    Google Scholar 

  • Hoff JT, MacKenzie ET, Harper AM (1977) Responses of the cerebral circulation of hypercapnia and hypoxia after 7th cranial nerve transection in baboons. Circ Res 40:258–262

    Google Scholar 

  • Iadecola C, Arbit E, Nakai M, Mraovitch S, Tucker L, Reis DJ (1982) Increased regional cerebral blood flow and metabolism electricity by stimulation of the dorsal medullary reticular formation in the rat: evidence for an intrinsic neural system in brain regulating cerebral metabolism. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier, North Holland, pp 485–492

    Google Scholar 

  • Iadecola C, Nakai M, Arbit E, Reis DJ (1983) Global cerebral vasodilatation elicited by focal electrical stimulation within the dorsal medullary reticular formation in anesthetized rat. J Cereb Blood Flow Metab 3:270–279

    Google Scholar 

  • Ingvar DH, Lassen NA (1982) Regional blood flow of the cerebral cortex determined by Krypton85. Acta Physiol Scand 54:325–338

    Google Scholar 

  • Jackson EK, Gerkens JF, Zimmerman JB, Uderman HD, Oates JA, Workman RJ, Branch RA (1983) Prostaglandin biosynthesis does not participate in hypercapnia-induced cerebral vasodilation in the dog. J Pharmacol Exp Ther 226:486–492

    Google Scholar 

  • James IM, MacDonell L (1975) The role of baroreceptors and chemoreceptors in the regulation of the cerebral circulation. Clin Sci 49:465–471

    Google Scholar 

  • James IM, Millar RA, Purves MJ (1969) Observations on the extrinsic neural control of cerebral blood flow in the baboon. Circ Res 25:77–93

    Google Scholar 

  • Johansson B, Mellander S (1975) Static and dynamic componenty in the vascular response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal vein. Circ Res 36:76–83

    Google Scholar 

  • Johansson BB, Linder LE (1980) The blood brain barrier in renal hypertensive rats. Clin Exp Hypertension 2(6):983–993

    Google Scholar 

  • Johansson BB, Nordborg C (1978) Cerebral vessels in spontaneously hypertensive rat. Adv Neurol 20:349–357

    Google Scholar 

  • Johnson PC, Henrich HA (1975) Metabolic and myogenic factors in local regulation of the microcirculation. Fed Proc 34:2020–2024

    Google Scholar 

  • Jones JV, Fitch W, MacKenzie ET, Strandgaard S, Harper AM (1976) Lower limit of cerebral blood flow and autoregulation in experimental renovascular hypertension in the baboon. Circ Res 39:555–557

    Google Scholar 

  • Jones MD Jr, Sheldon RE, Peeters LL, Makoski EL, Meschia G (1978) Regulation of cerebral blood flow in the ovine fetus. Am J Physiol 235:H162–H166

    Google Scholar 

  • Jones MD Jr, Traystman RJ, Simmons MA, Molteni RA (1981) Effects of changes in arterial O2 content on cerebral blood flow in the lamb. Am J Physiol 240:H209–H215

    Google Scholar 

  • Jonsson O (1970) Extracellular osmolaity and vascular smooth muscle activity. Acta Physiol Scand (Suppl) 359:1–48

    Google Scholar 

  • Katayama Y, Aeno Y, Tsukiyama T, Tsubakawa T (1981) Long lasting suppression of firing of cortical neurons and decrease in cortical blood flow following train pulse stimulation of the locus coeruleus in the cat. Brain Res 216:173–179

    Google Scholar 

  • Kato M, Ueno H, Black P (1974) Regional cerebral blood flow of the main visual pathways during photic stimulation of the retina in intact and split-brain monkeys. Exp Neurol 42:65–77

    Google Scholar 

  • Kawamura Y, Meyer JS, Hiromoto H, Aoyagi M, Tagashira Y, Ott EO (1975) Neurogenic control of cerebral blood flow in the baboon. J Neurosurg 43:676–688

    Google Scholar 

  • Koehler RC, Traystman RJ (1982) Bicarbonate ion modulation of cerebral blood flow during hypoxia and hypercapnia. Am J Physiol 243:H33–H40

    Google Scholar 

  • Kogure K, Scheinberg P, Reinmuth OM, Fujishima M (1970a) Effects of hypoxia on cerebral autoregulation. Am J Physiol 219:1393–1396

    Google Scholar 

  • Kogure K, Scheinberg P, Reinmuth OM, Fujishima M, Busto R (1970b) Mechanisms of cerebral vasodilatation in hypoxia. J Appl Physiol 29:223–229

    Google Scholar 

  • Kontos HA, Raper AJ, Patterson JL Jr (1977a) Analysis of vasoactivity of local pH, pCO2 and bicarbonate and pial vessels. Stroke 8:358–360

    Google Scholar 

  • Kontos HA, Wei EP, Raper AJ, Patterson JL Jr (1977b) Local mechanism of CO2 action on cat pial arterioles. Stroke 8:226–229

    Google Scholar 

  • Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr (1978a) Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol 234:H371–H383

    Google Scholar 

  • Kontos HA, Wei EP, Raper AJ, Rosenblum WI, Navari RM, Patterson JL Jr (1978b) Role of tissue hypoxia in local regulation of cerebral microcirculation. Am J Physiol 234:H582–H591

    Google Scholar 

  • Kreutzberg GW, Barron KD, Schubert P (1978) Cytochemical localization of 5′-nucleotidose in glial plasma membranes. Brain Res 158:247–257

    Google Scholar 

  • Krishner HS, Blank WF, Myers RE (1975) Brain extracellular potassium activity during hypoxia in the cat. Neurology 25:1001–1005

    Google Scholar 

  • Krishner HS, Blank WF Jr, Myers RE (1976) Changes in cortical subarachnoid fluid potassium concentrations during hypoxia. Arch Neurol 33:84–90

    Google Scholar 

  • Kuschinsky W, Wahl M (1975) Alpha-receptor stimulation by endogenous and exogenous norepinephrine and blockade by phentolamine in pial arteries in cats. Circ Res 37:168–174

    Google Scholar 

  • Kuschinsky W, Wahl M (1979) Perivascular pH and pial arterial diameter during bicuculline induced seizures in cats. Pflügers Arch 382:81–85

    Google Scholar 

  • Kuschinsky W, Wahl M, Bosse O, Thurau K (1972) Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study. Circ Res 31:240–247

    Google Scholar 

  • Kuschinsky W, Wahl M, Weiss A (1974) Evidence for cholinergic dilatory receptors in pial arteries of cat: a microapplication study. Pflügers Arch 347:199–208

    Google Scholar 

  • Kuschinsky W, Suda S, Sokoloff L (1981) Local cerebral glucose utilization and blood flow during metabolic acidosis. Am J Physiol 241:H772–H777

    Google Scholar 

  • Lacombe P, Reynier-Rebuffel AM, Masmo H, Seylaz J (1977) Quantitative multiregional blood flow measurements during cervical sympathetic stimulation. Brain Res 129:129–140

    Google Scholar 

  • Langer AW, Obrist PA, McCubbin JA (1979) Hemodynamic and metabolic adjustments during exercise and shock avoidance in dogs. Am J Physiol 236:H225–H230

    Google Scholar 

  • Langfitt TW, Weinstein JD, Kassell NF (1966) Vascular factors in head injury. In: Caveness WF, Walker AE (eds) Head injury. Lippincott, Philadelphia, pp 172–194

    Google Scholar 

  • Lambertsen CJ, Kough RH, Cooper DY, Emmel GL, Loeschcke HH, Schmidt CF (1953) Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J Appl Physiol 5:471–486

    Google Scholar 

  • Larsson LI, Edvinsson L, Fahrenkrug J, Hakanson R, Owman C, Schaffalitzky De Musckadell O, Sundler F (1976) Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res 113:400–404

    Google Scholar 

  • Lassen NA (1968) Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest 22:247–251

    Google Scholar 

  • Lassen NA, Ingvar DH, Skinhøj E (1978) Brain function and blood flow. Sci Am 239:62–71

    Google Scholar 

  • Lee TJF (1980) Direct evidence against acetylcholine as the dilator transmitter in the cat cerebral artery. Eur J Pharmacol 68:393–394

    Google Scholar 

  • Lee TJF (1982) Cholinergic mechanism in the large cat cerebral artery. Circ Res 50:870–879

    Google Scholar 

  • Lee TJF, Su C, Bevan JA (1976) Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Circ Res 39:120–126

    Google Scholar 

  • Lee RJF, Hume WR, Su C, Bevan JA (1978) Neurogenic vasodilation of cat cerebral arteries. Circ Res 42:535–542

    Google Scholar 

  • Lee TJF, Chiang CC, Adams M (1980) Synaptic transmission of vasoconstrictor nerves in rabbit basilar artery. Eur J Pharmacol 61:55–70

    Google Scholar 

  • Leninger-Follert E, Hossman K-A (1979) Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pflügers Arch 380:85–89

    Google Scholar 

  • Leninger-Follert E, Lübbers DW (1976) Behavior of microflow and local PO2 of the brain cortex during and after direct electrical stimulation. Pflügers Arch 366:39–44

    Google Scholar 

  • Levasseur JE, Wei EP, Raper AJ, Kontos HA, Patterson JL Jr (1975) Detailed description of a cranial window technique for acute and chronic experiments. Stroke 6:308–317

    Google Scholar 

  • Linder J (1981) Effects of facial nerve section and stimulation on cerebral and ocular blood flow in hemorrhagic hypotension. Acta Physiol Scand 112:185–193

    Google Scholar 

  • Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266

    Google Scholar 

  • Lindvall M, Cervos-Navarro J, Edvinsson L, Owman CH, Stenevi U (1975) Nonsympathetic perivascular nerves in the brain: Origin and mode of innervation studied by fluorescence and electronic microscopy combined with stereotaxic lesions and sympathectomy. In: Harper AM, Jennett WB, Miller JD, Rowan JO (eds) Blood flow and metabolism in the brain. Churchill-Livingstone, Edinburgh, pp 1.7–1.9

    Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978a) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201:176–178

    Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978b) Reduced cerebrospinal fluid formation through cholinergic mechanisms. Neurosci Lett 10:311–316

    Google Scholar 

  • Liu-Chen LY, Han DH, Moskowitz MA (1983) Pia arachnoid contains substance P originating from trigeminal neurons. Neuroscience 9:803–808

    Google Scholar 

  • Lundberg JM, Hökfelt T, Schultzberg M, Üvnas-Wallenstein K, Köhler C, Said SI (1979) Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience 4:1539–1559

    Google Scholar 

  • Lusamvuku NAT, Sercombe R, Aubineau P, Seylaz J (1979) Correlated electrical and mechanical responses of isolated rabbit pial arteries to some vasoactive drugs. Stroke 10:727–732

    Google Scholar 

  • MacKenzie ET, McCulloch J, O'Keane M, Pickard J-D, Harper AM (1976a) Cerebral circulation and norepinephrine: relevance of the blood-brain barrier. Am J Physiol 231:483–488

    Google Scholar 

  • MacKenzie ET, Strandgaard S, Graham DI, Jones JV, Harper AM, Farrar JK (1976b) Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circ Res 39:33–41

    Google Scholar 

  • MacKenzie ET, McGeorge AP, Graham DI, Fitch W, Edvinsson L, Harper AM (1979) Effects of increasing arterial pressure on cerebral blood flow in the baboon: influence of the sympathetic nervous system. Pflügers Arch 378:189–195

    Google Scholar 

  • Marcus ML, Heistad DD (1979) Effects of sympathetic nerves on cerebral blood flow in awake dogs. Am J Physiol 5:H549–H553

    Google Scholar 

  • Marcus ML, Heistad DD, Ehrhardt JC, Abboud FM (1976) Total and regional cerebral blood flow measurement with 7–10-, 15-, 25-, and 50-µm microspheres. J Appl Physiol 40:501–507

    Google Scholar 

  • Marcus ML, Bischof CJ, Heistad DD (1981a) Comparison of microsphere and Xenon-133 clearance method in measuring skeletal muscle and cerebral blood flow. Circ Res 48:748–761

    Google Scholar 

  • Marcus ML, Busija DW, Bischof CJ, Heistad DD (1981b) Methods for measurement of cerebral blood flow. Fed Proc 40:2306–2310

    Google Scholar 

  • Marcus ML, Busija DW, Gross PM, Brooks LA, Heistad DD (1982) Sympathetic escape in the cerebral circulation during normotension and acute severe hypertension. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effect of nerves and neurotransmitters. Elsevier, New York, pp 281–289

    Google Scholar 

  • Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L, Saraki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34:213–215

    Google Scholar 

  • Matsuda M, Yoneda S, Gotoh H, Handa J, Handa H (1978) Effect of atropine on cerebrovascular responsiveness to carbon dioxide. J Neurosurg 48:417–422

    Google Scholar 

  • Mayberg M, Langer RS, Zervas NT, Moskowitz MA (1981) Perivascular meningeal projections from cat trigeminal ganglia: Possible pathway for vascular headaches in man. Science 213:228–230

    Google Scholar 

  • McCalden TA, Bevan JA (1981) Sources of activator calcium in rabbit basilar artery. Am J Physiol 10:H129–H133

    Google Scholar 

  • McCalden TA, Nath R, Thiele K (1982) The role of prostaglandins in the cerebrovascular dilation with hypercapnia and hypoxia. Fed Proc 41:1610 (Abstract)

    Google Scholar 

  • McCulloch J, Edvinsson L (1980) The effects of vasoactive intestinal polypeptide upon pial arteriolar calibre, cerebral blood flow, cerebral oxygen consumption and the electroencephalogram. Am J Physiol 238:H449–H456

    Google Scholar 

  • McCulloch J, Savaki HE, McCulloch MC, Jehle J, Sokoloff L (1982a) The distribution of alterations in energy metabolism in the rat brain produced by apomorphine. Brain Res 243:67–80

    Google Scholar 

  • McCulloch J, Savaki HE, Sokoloff L (1982b) Distribution of effects of haloperidol on energy metabolism in the rat brain. Brain Res 243:81–90

    Google Scholar 

  • McCulloch J, Kelly PAT, Ford I (1982c) Effect of apomorphine on the relationship between local cerebral glucose utilization and local cerebral blood flow. J Cereb Blood Flow Metab 2:487–499

    Google Scholar 

  • McCulloch J, Kelly PAT, Grome JJ, Pickard JD (1982d) Local cerebral circulatory and metabolic effects of indomethacin. Am J Physiol 243:H416–H423

    Google Scholar 

  • McCulloch J, Savaki HE, Angersen W (1982e) Regional water permeability in the CNS of conscious rats: Effects of hypercapnia and locus coeruleus lesions. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier North Holland, New York, pp 509–516

    Google Scholar 

  • Meldrum BS, Nilsson B (1976) Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bucuculline. Brain 99:523–542

    Google Scholar 

  • Metzger H (1979) Effects of direct stimulation on cerebral cortex oxygen tension level. Microvasc Res 17:80–89

    Google Scholar 

  • Miller AL, Hawkins RA, Veech RL (1975) Decreased rate of glucose utilization by rat brain in vivo after exposure to atmospheres containing high concentrations of CO2. J Neurochem 25:553–558

    Google Scholar 

  • Miyaoka M, Shinohara M, Kennedy C, Sokoloff L (1980) Alterations in local cerebral glucose utilization (LCGU) in rat brain during hypoxemia. Trans Am Neurol Assoc 104:1–4

    Google Scholar 

  • Morii S, Winn HR, Berne RM (1983) Effect of theophylline, an adenosine receptor blocker, on cerebral blood flow (CBF) during rest and transient hypoxia. J Cereb Blood Flow Metab 3 (Suppl 1):S480–S481

    Google Scholar 

  • Morris ME (1974) Hypoxia and extracellular potassium activity in the guinea-pig cortex. Can J Physiol Pharmacol 52:872–882

    Google Scholar 

  • Mueller SM, Heistad DD (1980) Effect of chronic hypertension on the blood-brain barrier. Hypertension 2:809–812

    Google Scholar 

  • Mueller SM, Luft FC (1982) The blood-brain barrier in renovascular hypertension. Stroke 13(2):229–234

    Google Scholar 

  • Mueller SM, Heistad DD, Marcus ML (1977) Total and regional cerebral blood flow during hypotension, hypertension and hypocapnia: Effect of sympathetic denervation in dogs. Circ Res 41:350–356

    Google Scholar 

  • Mueller SM, Heistad DD, Marcus ML (1979) Effect of sympathetic nerves on cerebral vessels during seizures. Am J Physiol 237:H178–H184

    Google Scholar 

  • Mueller SM, Ertel PJ, Felten DL, Overhage JM (1982) Sympathetic nerves protect against blood-brain barrier disruption in the spontaneously hypertensive rat. Stroke 13:83–88

    Google Scholar 

  • Mueller SM, Ertel PJ, Felten DL, Overhage JM (1983) The chronic influence of sympathetic nerves on cerebral vessels is age-related. Stroke 14:286–289

    Google Scholar 

  • Muramatsu I, Kushima SI, Fujiwara M (1977) Enhancement by the phentolamine of sympathetic contraction of dog basilar artery and alpha-receptor mediated feedback. In: Owman Ch, Edvinsson L (eds) Neurogenic control of the brain circulation Werner-Gren Center international symposium series, vol 30. Pergamon, Oxford, p 197

    Google Scholar 

  • Nakai M, Iadecola C, Reis DJ (1982) Global cerebral vasodilation by stimulation of rat fastigial cerebellar nucleus. Am J Physiol 243:H226–H235

    Google Scholar 

  • Nakai M, Iadecola C, Ruggiero DA, Tucker LW, Reis DJ (1983) Electrical stimulation of cerebellar fastigial nucleus increases cerebral cortical blood flow without change in local metabolism: Evidence for an intrinsic system in brain for primary vasodilation. Brain Res 260:35–49

    Google Scholar 

  • Napolitano LM, Williams VL, Hanlon CR, Cooper T (1965) Intrinsic innervation of the heart. Am J Physiol 208:455–458

    Google Scholar 

  • Nielsen KC, Owman CH (1967) Adrenergic innervation of pial arteries related to the circle of Willis in the cat. Brain Res 6:773–776

    Google Scholar 

  • Nilsson B, Nordberg K, Nordström CH, Siesjö BK (1975) Influence of hypoxia and hypercapnia in rats. In: Harper M et al. (eds) Blood flow and metabolism in brain. Churchill Livingstone, Edinburgh, pp 9.19–9.23

    Google Scholar 

  • Nilsson B, Rehncrona S, Siesjö BK (1979) Coupling of cerebral metabolism and blood flow in epileptic seizures, hypoxia and hypoglycaemia. In: Ciba Symposium on Cerebral Vascular Smooth Muscle and its Control. Excerpta Medica, Amsterdam, pp 199–214

    Google Scholar 

  • Nordberg K, Siesjö BK (1975) Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis: a re-evaluation. Brain Res 86:31–44

    Google Scholar 

  • Nornes H, Knutgen HB, Wikeby P (1977) Cerebral arterial blood flow and aneurysm surgery. J Neurosurg 47:819–827

    Google Scholar 

  • Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221:1629–1639

    Google Scholar 

  • Olesen J (1971) Contralateral focal increase of regional cerebral blood flow in man during arm work. Brain 94:635–646

    Google Scholar 

  • Olsson RA, Saito D, Steinhart CR (1982) Compartmentalization of the adenosine pool of dog and rat hearts. Circ Res 50:617–626

    Google Scholar 

  • Orkland RK, Nicholls JG, Kuffler SW (1966) Effects of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    Google Scholar 

  • Orr JA, Wagerle LC, Kiorpes AL, Shirer HW, Friesen BS (1983) Distribution of internal carotid artery blood flow in the pony. Am J Physiol 244:H142–H149

    Google Scholar 

  • Pearce WJ, Bevan RD, Bevan JA (1982) Neurogenic vasoconstriction of extracranial veins draining canine cerebral venous effluent. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier North Holland, New York, pp 87–84

    Google Scholar 

  • Peerless SJ, Kendall MJ (1975) In: Smith RR, Robertson JT (eds) Subarachnoid hemorrhage and cerebrovascular spasm. Thomas, Springfield, pp 38–54

    Google Scholar 

  • Peerless SJ, Yasargil MG (1971) Adrenergic innervation of the cerebral blood vessels in the rabbit. J Neurosurg 35:148–154

    Google Scholar 

  • Pickard JD, MacKenzie ET (1973) Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation to carbon dioxide. Nature New Biol 245:187–188

    Google Scholar 

  • Pickard DD, Rose JE, Cooke MBD, Blair IM, Strathdee A (1977) The effect of salicylate on cerebral blood flow in man. Acta Neurol Scand 56 (Suppl 64):422–423 (Abstract)

    Google Scholar 

  • Pinard E, Purves MJ, Seylaz J, Vasquez JV (1979) The cholinergic pathway to cerebral blood vessels. II. Physiological Studies. Pflügers Arch 379:165–172

    Google Scholar 

  • Ponte J, Purves MJ (1974) The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J Physiol (Lond) 237:315–340

    Google Scholar 

  • Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50:489–495

    Google Scholar 

  • Pull I, McIlwain H (1972) Metabolism of [14C] adenine and derivates by cerebral tissues, superfused and electrically stimulated. Biochem J 126:965–973

    Google Scholar 

  • Purdy RE, Bevan JA (1977) Adrenergic innervation of large cerebral blood vessels of the rabbit studied by fluorescence microscopy: Absence of features that might contribute to non-uniform change in cerebral blood flow. Stroke 8:82–87

    Google Scholar 

  • Purves MJ (1978) Do vasomotor nerves significantly regulate cerebral blood flow? Circ Res 43:485–493

    Google Scholar 

  • Raichle ME, Hartman BK, Eichling JO, Sharpe LG (1975) Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci USA 72:3726–3730

    Google Scholar 

  • Raichle ME, Grubb RL, Gado MH, Eichling JO, Ter-Pogossian MM (1976) Correlation between regional cerebral blood flow and oxidative metabolism. Arch Neurol 33:523–526

    Google Scholar 

  • Rapela CE, Green HD (1964) Autoregulation of canine cerebral blood flow. Circ Res 14 (Suppl 1):205–211

    Google Scholar 

  • Rapela CE, Green HD, Denison AB Jr (1967) Baroreceptor reflexes and autoregulation of cerebral blood flow in the dog. Circ Res 21:559–568

    Google Scholar 

  • Raper AJ, Kontos HA, Patterson JL Jr (1971) Response of pial precapillary vessels to changes in arterial carbon dioxide tension. Circ Res 28:518–523

    Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven, New York, pp 66–70

    Google Scholar 

  • Rennels MG, Forbes MS, Anders JJ, Nelson E (1977) Innervation of the microcirculation in the central nervous system and other tissues. In: Owman C, Edvinsson L (eds) Neurogenic control of the brain circulation. Pergamon, Oxford, pp 91–104

    Google Scholar 

  • Rosenberg AA, Jones MD Jr, Traystman RJ, Simmons MA, Molteni RA (1982) Response of cerebral blood flow to changes in PCO 2 in fetal, newborn, and adult sheep. Am J Physiol 242:H862–H866

    Google Scholar 

  • Rosenblum WI (1976a) The “richness” of sympathetic innervation. A comparison of cerebral blood vessels. Stroke 7:270–271

    Google Scholar 

  • Rosenblum WI (1976b) Some physiologic properties of nerves in the adventitia of cerebral blood vessels as revealed by fluorescence microscopy. In: Cervós-Navarro J, Betz E, Matakas F, Wüllenweber R (eds) The cerebral vessel wall. Raven, New York, pp 183–189

    Google Scholar 

  • Rovere AA, Scremin OU, Beresi MR, Raynald AC, Giardini A (1973) Cholinergic mechanism in the cerebrovascular action of carbon dioxide. Stroke 4:969–972

    Google Scholar 

  • Rubio R, Berne RM, Bockman EL, Curnish RR (1975) Relationship between adenosine concentration and oxygen supply in rat brain. Am J Physiol 228:1896–1902

    Google Scholar 

  • Sadoshima S, Fujishima M, Tamaki K, Nakatomi Y, Ishitsuka T, Ogata J, Omal T (1980) Response of cortical and pial arteries to changes of arterial CO2 tension in rats — a morphometric study. Brain Res 189:115–120

    Google Scholar 

  • Sadoshima S, Busija DW, Brody MJ, Heistad DD (1981a) Sympathetic nerves protect against stroke in stroke-prone hypertensive rats. A preliminary study. Hypertension 3:I124–I127

    Google Scholar 

  • Sadoshima S, Thames M, Heistad D (1981b) Cerebral blood flow during elevation of intracranial pressure: Effects of sympathetic nerves. Am J Physiol 10:H78–H84

    Google Scholar 

  • Sadoshima S, Busija DW, Heistad DD (1983) Mechanism of protection against stroke in stroke-prone spontaneously hypertensive rats. Am J Physiol 244:H406–H412

    Google Scholar 

  • Sagawa K, Guyton AC (1961) Pressure-flow relationships in isolated canine cerebral circulation. Am J Physiol 200:711–714

    Google Scholar 

  • Sakabe T, Siesjö BK (1979) The effect of indomethacin as the blood flow-metabolism couple in the brain under normal, hypercapnic and hypoxic conditions. Acta Physiol Scand 107:283–284

    Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with [14C]iodoantipyrine. Am J Physiol 234:H59–H66

    Google Scholar 

  • Schneider W, Wahl M, Kischinsky W, Thurau K (1977) The use of microelectrodes for measurement of local H+ activity in the cortical subarachnoid space of cats. Pflügers Arch 372:103–107

    Google Scholar 

  • Schrader J (1983) Metabolism of adenosine and sites of production in the heart. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Martinus Nijhoff, The Hague, pp 133–156

    Google Scholar 

  • Schuier FJ, Fedora T, Jones SC, Reivich M (1981) Comparison of rCBF obtained by the microsphere method versus the C14-iodoantipyrine method. J Cereb Blood Flow Metab 1 (Suppl 1):S76–S77 (Abstract)

    Google Scholar 

  • Schultz V, Lowenstein JM (1978) The purine nucleotide cycle. J Biol Chem 253:1938–1943

    Google Scholar 

  • Scremin OU, Rubinstein EH, Sonnenschein RR (1978) Cerebrovascular CO2 reactivity: role of a cholinergic mechanism modulated by anesthesia. Stroke 9:160–165

    Google Scholar 

  • Scremin OU, Sonnenschein RR, Rubinstein EH (1983) Cholinergic cerebral vasodilatation: lack of involvement of cranial parasympathetic nerves. J Cereb Blood Flow Metab 3:362–368

    Google Scholar 

  • Sercombe R, Lacombe P, Aubineau P, Mamo H, Pinard E, Reynier-Rebuffel AM, Seylaz J (1979) Is there an active mechanism limiting the influence of the sympathetic system on the cerebral vascular bed? Evidence for vasomotor escape from sympathetic stimulation in the rabbit. Brain Res 164:81–102

    Google Scholar 

  • Shalit MN, Reinmuth OM, Shimojyo S, Scheinberg P (1967) Carbon dioxide and cerebral circulatory control. III. The effects of brain stem lesions. Arch Neurol 17:342–353

    Google Scholar 

  • Shepherd JT, Vanhoutte PM (1981) Local modulation of aderenergic neurotransmission. Circulation 64:655–666

    Google Scholar 

  • Siesjö BK, Zwetnow NM (1970) The effect of hypovolemic hypotension on extra-and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand 79:114–124

    Google Scholar 

  • Silver IA (1973) Local PO2 in relation to intracellular pH, cell membrane potential and potassium leakage in hypoxia and shock. Adv Exp Med Biol 37A:223–232

    Google Scholar 

  • Silver IA (1978) Cellular microenvironment in relation to local blood flow. Ciba Found Symp 56:49–61

    Google Scholar 

  • Singer W, Lux HD (1973) Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus. Brain Res 64:17–33

    Google Scholar 

  • Singer W, Lux HD (1975) Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Res 96:378–383

    Google Scholar 

  • Skinhøj E (1966) Regulation of cerebral blood flow as a single function of the interstitial pH in the brain. A hypothesis. Acta Neurol Scand 42:604–607

    Google Scholar 

  • Skinhøj E, Strandgaard S (1973) Pathogenesis of hypertensive encephalopathy. Lancet 1:461–462

    Google Scholar 

  • Sokoloff L (1981) Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc 40:2311–2316

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy D, Des Rosiers CS, Patlak KD, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values for the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

  • Solberg LA, Egger DA (1971) Localization and sequence of development of atherosclerotic lesions in the carotid and vertebral arteries. Circulation 43:711–724

    Google Scholar 

  • Stehbens WE (1972) Pathology of cerebral blood vessels. Mosby, St Louis, pp 98–130

    Google Scholar 

  • Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 53:720–727

    Google Scholar 

  • Strandgaard S, Olesen J, Skinhoj E, Lassen NA (1973) Autoregulation of brain circulation in severe arterial hypertension. Br Med J 1:507–510

    Google Scholar 

  • Strandgaard S, MacKenzie ET, Sengupta D, Rowan JO, Lasser NA, Harper AM (1974) Upper limit of autoregulation of cerebral blood flow in the baboon. Circ Res 34:435–440

    Google Scholar 

  • Strandgaard S, Jones JV, MacKenzie ET, Harper AM (1975) Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon. Circ Res 37:164–167

    Google Scholar 

  • Suzuki H, Fujiwara S (1982) Neurogenic electrical responses of single smooth muscle cells of the dog middle cerebral artery. Circ Res 51:751–759

    Google Scholar 

  • Symon L, Held K, Doroch NWC (1973) A study of regional autoregulation in the cerebral circulation to increased perfusion pressure in normocapnia and hypercapnia. Stroke 4:139–147

    Google Scholar 

  • Toda N (1982) Relaxant responses to transmural stimulation and nicotine of dog and monkey cerebral arteries. Am J Physiol 243:H145–H153

    Google Scholar 

  • Toda N, Fujita Y (1973) Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine and transmural electrical stimulation. Circ Res 33:98–104

    Google Scholar 

  • Toda N, Hatano Y, Hayaski S (1978) Modifications by stretches of the mechanical response of isolated cerebral and extracerebral arteries to vasocative agents. Pflügers Arch 374:73–77

    Google Scholar 

  • Towart R (1981) The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium-antagonistic dihydropyridines. An investigation of the mechanism of action of nimodipine. Circ Res 48:650–657

    Google Scholar 

  • Towart R, Kazda S (1982) Preferential vasodilator actions of the calcium antagonists nimodipine (BAYe 9736), nifedipine, and verapamil on contractions of cerebral vascular smooth muscle induced by neurotransmitter and vasoconstrictor substances. In: Heistad DD, Marcus ML (eds) Cerebral blood flow: effects of nerves and neurotransmitters. Elsevier North Holland, New York, pp 29–38

    Google Scholar 

  • Traystman RJ, Fitzgerald RS (1981) Cerebrovascular response to hypoxia in baroreceptor-and chemoreceptor-denervated dogs. Am J Physiol 241:H724–H731

    Google Scholar 

  • Traystman RJ, Rapela CE (1975) Effect of sympathetic nerve stimulation on cerebral and cephalic blood flow in dogs. Circ Res 36:620–630

    Google Scholar 

  • Urbanics R, Leniger-Follert E, Lübbers DW (1978) Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex. Pflügers Arch 378:47–53

    Google Scholar 

  • Vasquez J, Purves MJ (1979) The cholinergic pathway to cerebral blood vessels. I Morphological Studies. Pflügers Arch 379:157–163

    Google Scholar 

  • Vatner SF, Priano LL, Rutherford JD, Manders WT (1980) Sympathetic regulation of the cerebral circulation by the carotid chemoreceptor reflex. Am J Physiol 238:H594–H598

    Google Scholar 

  • Vindall PE, Simeone FA (1982) In vitro myogenic autoregulation in cerebral blood vessels. In: Heistad DD, Marcus ML (eds) Cerebral blood flow. Effect of nerves and neurotransmitters. Elsevier, New York, pp 57–66

    Google Scholar 

  • Wagerle LC, Heffernan TM, Sacks LM, Delivoria-Papadopoulos M (1983) Sympathetic effect on cerebral blood flow regulation in hypoxic newborn lambs. Am J Physiol 245:H487–H494

    Google Scholar 

  • Wagner EM (1982) Hydrostatic determinants of cerebral blood flow. Ph D Dissertation, Johns Hopkins University, Baltimore

    Google Scholar 

  • Wagner EM, Traystman RJ (1983) Cerebral venous outflow and arterial microsphere flow with elevated venous pressure. Am J Physiol 244:H505–H512

    Google Scholar 

  • Wahl M, Kuschinsky W (1976) The dilatory action of adenosine on pial arteries of cats and its inhibition by theophylline. Pflügers Arch 362:55–59

    Google Scholar 

  • Wahl M, Kuschinsky W (1979) Unimportance of perivascular H+ and K+ activities for the adjustment of pial arterial diameter during changes of arterial blood pressure in cats. Pflügers Arch 382:203–208

    Google Scholar 

  • Wahl M, Kuschinsky W, Bosse O, Thurau K (1973) Dependency of pial arterial and arteriolar diameter on perivascular osmolarity in the cat. Circ Res 32:162–169

    Google Scholar 

  • Wei EP, Kontos HA (1982) Responses of cerebral arterioles to increased venous pressure. Am J Physiol 243:H442–H447

    Google Scholar 

  • Wei EP, Kontos HA (1983) Role of adenosine in cerebral arteriolar dilation from arteriolar dilation from arterial hypoxia. J Cereb Blood Flow Metab 1 (Suppl 1):S95–S96

    Google Scholar 

  • Wei EP, Raper AJ, Kontos HA, Patterson JL Jr (1975) Determinants of response of pial arteries to norepinephrine and sympathetic nerve stimulation. Stroke 6:654–658

    Google Scholar 

  • Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980a) Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46:37–47

    Google Scholar 

  • Wei EP, Ellis EF, Kontos HA (1980b) Role of prostaglandins in pial arteriolar response to CO2 and hypoxia. Am J Physiol 238:H226–H230

    Google Scholar 

  • Wei EP, Kontos HA, Patterson JL Jr (1980c) Dependence of pial arteriolar response to hypercapnia on vessel size. Am J Physiol 238:H697–H703

    Google Scholar 

  • Wei EP, Kontos HA, Said SI (1980d) Mechanism of action of vasoactive intestinal polypeptide on cerebral arterioles. Am J Physiol 239:H765–H768

    Google Scholar 

  • Weiss HR, Buckweitz E, Sinha AK (1983) Effect of hypoxic-hypocapnia on cerebral regional oxygen consumption and supply. Microvasc Res 25:194–204

    Google Scholar 

  • Wellens D, Wouters L, Stijner L, Reneman RS (1977) Anatomical and pharmacological characteristics of the cerebral circulation in dogs, cats and rats: contribution of the radioactive microsphere method. Bibl Anat 15:82–86

    Google Scholar 

  • Wilson DA, O'Neill JT, Said SI, Traystman RJ (1981) Vasoactive intestinal polypeptide and the canine cerebral circulation. Circ Res 48:138–148

    Google Scholar 

  • Winquist RJ, Webb RC, Bohr DF (1982) Relaxation of transmural nerve stimulation and exogenously added norepinephrine in porcine cerebral vessels: a study utilizing cerebrovascular intrinsic tone. Circ Res 51:769–776

    Google Scholar 

  • Winn HR, Rubio R, Berne RM (1979) Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45:486–492

    Google Scholar 

  • Winn HR, Welsh JE, Rubio R, Berne RM (1980a) Brain adenosine production in rat during sustained alteration in systemic blood pressure. Am J Physiol 239:H636–H641

    Google Scholar 

  • Winn HR, Welsh JE, Rubio R, Berne RM (1980b) Changes in brain adenosine during bicuculline-induced seizures in rats. Circ Res 47:568–577

    Google Scholar 

  • Winn HR, Rubio R, Berne RM (1981) Brain adenosine concentration during hypoxia in rat. Am J Physiol 241:H235–H242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag

About this chapter

Cite this chapter

Busija, D.W., Heistad, D.D. (1984). Factors involved in the physiological regulation of the cerebral circulation. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 101. Reviews of Physiology, Biochemistry and Pharmacology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0027696

Download citation

  • DOI: https://doi.org/10.1007/BFb0027696

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13679-8

  • Online ISBN: 978-3-540-39040-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics