Skip to main content

Boolean closure and unambiguity of rational sets

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1990)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 443))

Included in the following conference series:

  • 152 Accesses

Abstract

We consider three properties that can be verified by the rational subsets of a monoid M: to coincide with the recognizable subsets of M, to coincide with the unambiguous rational subsets of M, to form a boolean algebra. We study what connections exist between these properties. We build a monoid in which rational subsets are recognizable (and thus form a boolean algebra), but are not all unambiguous and a monoid in which rational subsets are unambiguous but do not form a boolean algebra. We show that the class of monoids the rational subsets of which are recognizable and unambiguous is not closed by finitely generated submonoids.

This work has been partially supported by the PRC Mathématiques et Informatique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amar V. and Puzolu G. (1965), “Generalizations of regular events”, Information and Control 8, 56–63.

    Google Scholar 

  2. Benois M. (1969), “Parties rationnelles du groupe libre”, C.R. Acad. Sci. Paris, Ser. A 269, 1188–1190.

    Google Scholar 

  3. Berstel J. (1979), “Transductions and Context-free Languages”, Teubner, Stuttgart.

    Google Scholar 

  4. Choffrut Ch. (1978), “Contribution à l'étude de quelques familles remarquables de fonctions rationnelles”, Thèse Sci. math., Univ. Paris 6, Paris.

    Google Scholar 

  5. Conway J.H. (1971), “Regular Algebra and Finite Machines”, Chapman and Hall.

    Google Scholar 

  6. Eilenberg S. (1974), “Automata, Languages and Machines”, Vol. A, Academic Press, New York.

    Google Scholar 

  7. Eilenberg S., Schützenberger M.P. (1969), “Rational sets in commutative monoids”, Journal of Algebra, 13, 173–191.

    Google Scholar 

  8. Johnson J.H. (1985), “Do Rational Equivalence Relations have Regular Cross-Sections?”, Proc. of the 12th International Conf. on Automata, Languages, and Programming, Springer-Verlag LNCS 194 300–309.

    Google Scholar 

  9. McKnight J. D., Jr. and Storey A. J. (1969), “Equidivisible semigroups”, Journal of Algebra, 12, 24–48.

    Google Scholar 

  10. Pelletier M. (1989), “Descriptions de semigroupes par automates”, Thèse de l'Université Paris 6.

    Google Scholar 

  11. Pelletier M., Sakarovitch J. (1988), “Easy multiplications II, Extensions of rational semigroups”, Rapport LITP Univ. Paris 6, 88–63, to appear in Information and Computation (1990).

    Google Scholar 

  12. Sakarovitch J. (1981), “Description des monoïdes de type fini”, EIK, 17, 417–434.

    Google Scholar 

  13. Sakarovitch J. (1987), Easy Multiplications. I. The Realm of Kleene's Theorem, Information and Computation, Vol. 74, No. 3, 173–197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael S. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pelletier, M. (1990). Boolean closure and unambiguity of rational sets. In: Paterson, M.S. (eds) Automata, Languages and Programming. ICALP 1990. Lecture Notes in Computer Science, vol 443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032055

Download citation

  • DOI: https://doi.org/10.1007/BFb0032055

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52826-5

  • Online ISBN: 978-3-540-47159-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics