Skip to main content

Simple folding model for HP lattice proteins

  • Molecular Modeling
  • Conference paper
  • First Online:
Bioinformatics (GCB 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1278))

Included in the following conference series:

Abstract

Combining the model of unguided, cotranslational folding of a nascent peptide chain with HP lattice proteins we designed a fast and straightforward folding algorithm. In choosing the search depth that is “looked ahead” at each chain growth step we tradeoff conformational search and accuracy against computational demands. We test the performance by folding short sequences with known, unique ground states. We find a success-rate, large enough to consider cotranslational foldability as a potential evolutionary fitness criterion. Characterizing the sequence to structure relation we find analogies to ground state ensembles: structure fitness landscapes are very rugged and there are few frequent and many rare structures. We conclude that our simple folding model is well suited for a realistic approximation of ensemble properties that we consider as crucial to understand the evolutionary dynamics of biopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alexandrov. Structural argument for N-terminal initiation of protein folding. Protein Science, 2:1989–1991, 1993.

    PubMed  Google Scholar 

  2. E. Bornberg-Bauer. Random Structures and the Evolution of Biopolymers. PhD thesis, University of Vienna, 1995.

    Google Scholar 

  3. E. Bornberg-Bauer. Random structures and evolution of biopolymers: A computational case study on RNA secondary structures. Pharmaceutica Acta Helvetiae, 71(1):79–85, 1996.

    Article  Google Scholar 

  4. E. Bornberg Bauer. Structure formation of biopolymers is complex, their evolution may be simple. In L. Hunter and T. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing, pages 97–108. World Scientific, London, 1996.

    Google Scholar 

  5. H. S. Chan and K. A. Dill. Comparing folding codes for proteins and polymers. Proteins, 24:335–344, 1996.

    Article  PubMed  Google Scholar 

  6. C. Chothia. One thousand families for the molecular biologist. Nature, 357:543–544, 1992.

    Article  PubMed  Google Scholar 

  7. M. H. Cordes, A. R. Davidson, and R. T. Sauer. Sequence space, folding and protein design. Curr. Opn. Struct. Biol., 6:3–10, 1996.

    Article  Google Scholar 

  8. C. W. David. X-ploring extraribosomal peptide folding during synthesis. J. Comp. Chem., 15:662–665, 1994.

    Article  Google Scholar 

  9. K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. Chan. Principles of protein folding-a perspective from simple exact models. Protein Science, 4:561–602, 1995.

    PubMed  Google Scholar 

  10. K. M. Fiebig and K. A. Dill. Protein core assembly process.J. Chem. Phys., 98:3475–3487, 1993.

    Article  Google Scholar 

  11. W. Fontana, P. F. Stadler, E. G. Bornberg-Bauer, T. Griesmacher, I. L. Hofacker, M. Tacker, P. Tarazona, E. D. Weinberger, and P. Schuster. RNA folding and combinatory landscapes. Phys. Rev. E, 47(3):2083–2099, 1993.

    Article  Google Scholar 

  12. A. Fraenkel. Complexity of protein folding. Bull. Math. Biol., 55:1199–1210, 1993.

    Article  PubMed  Google Scholar 

  13. T. Garel and H. Orland. Guided replication of random chains: a new monte carlo method. J. Phys. A: Math. Gen., 23:L621–L626, 1990.

    Article  Google Scholar 

  14. W. E. Hart and S. C. Istrail. Fast protein folding in the hydrophobic-hydrophilic model within three-eighths of optimal. J. Comp. Biol., 3:53–96, 1996.

    Google Scholar 

  15. D. E. Knuth. The Art of Computer Programming, Vol 3. Addison Wesley, Reading, MA (USA), 1973.

    Google Scholar 

  16. K. F. Lau and K. A. Dill. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules, 22:3986–3997, 1989.

    Article  Google Scholar 

  17. C. Levinthal. Are there pathways for protein folding? J. Chim. Phys., 65:44–45, 1968.

    Google Scholar 

  18. H. Li, R. Helling, C. Tang, and N. Wingreen. Emergence of preferred structures in a simple model of protein folding. Science, 273:666–669, 1996.

    PubMed  Google Scholar 

  19. E. V. Makeyev, V. A. Kolb, and A. S. Spirin. Enzymatic activity of the ribosomebound nascent polypeptide. FEBS Letters, 378:166–170, 1996.

    Article  PubMed  Google Scholar 

  20. H. Meirovitch. Computer simulation of self-avoiding walks: Testing the scanning method. J. Chem. Phys., 79:502–508, 1983.

    Article  Google Scholar 

  21. J. T. Ngo and J. Marks. Computational complexity of a problem in molecular structure prediction. Protein Eng., 5:313–321, 1992.

    PubMed  Google Scholar 

  22. E. M. O'Toole and A. Z. Panagiotopoulos. Monte carlo simulation of folding transitions of simple model proteins using a chain growth algorithm. J. Chem. Phys., 97:8644–8652, 1992.

    Article  Google Scholar 

  23. B. H. Park and M. Levitt. The complexity and accuracy of discrete state models, of protein structure. J. Mol. Biol., 249:493–507, 1996.

    Article  Google Scholar 

  24. A. Renner and E. Bornberg-Bauer. Exploring the fitness landscapes of lattice proteins. In L. Hunter and T. Klein, editors, Proceedings of the Pacific Symposium on Biocomputing. World Scientific, London, in press.

    Google Scholar 

  25. A. Renner, E. Bornberg-Bauer, I. L. Hofacker, and P. F. Stadler.Self-avoiding walk models for non-random heteropolymers. preprint, 1996.

    Google Scholar 

  26. P. Schuster, W. Fontana, P. F. Stadler, and I. L. Hofacker. From sequences to shapes and back: A case study in RNA secondary structures. Proc.Roy.Soc.(London)B, 255:279–284, 1994.

    Google Scholar 

  27. E. I. Shakhnovich. Modeling protein folding: the beauty and power of simplicity. Folding & Design, 1:R50–R54, 1996.

    Google Scholar 

  28. J. E. Solomon and D. Liney. Exploration of compact protein conformations using the guided replication monte carlo method. Biopolymers, 36:579–597, 1995.

    Article  PubMed  Google Scholar 

  29. P. Stolorz. Recursive approaches to the statistical physiscs of lattice proteins. Proc. 27th Hawaii International Conference on System Sciences, 1994.

    Google Scholar 

  30. T. Thanaraj and P. Argos. Ribosome-mediated translation pause and protein domain organization. Protein Science, 5:1594–1612, 1996.

    PubMed  Google Scholar 

  31. R. Unger and J. Moult. Finding lowest free energy conformation of a protein is an. NP-hard problem: Proof and implications. Bull. Math. Biol., 55:1183–1198, 1993.

    Article  PubMed  Google Scholar 

  32. R. Unger and J. Moult.Genetic algorithms for protein folding simulations. J. Mol. Biol., 231:75–81, 1993.

    Article  PubMed  Google Scholar 

  33. M. Vasquez and H. A. Scheraga. Use of buildup and energy-minimization procedures to compute low-energy structures of the backbone of enkephalin. Biopolymers, 24:1437–1447, 1985.

    Article  PubMed  Google Scholar 

  34. D. B. Wetlaufer. Nucleation, rapid folding and globular intrachain regions in proteins. Proc. Natl. Acad. Sci., USA, 70:697–701, 1973.

    Google Scholar 

  35. K. Yue, M. Fiebig, P. D. Thomas, H. S. Chars, E. I. Shakhnovich, and K. A. Dill. A test of lattice protein folding algorithms. Proc.Nati.Acad.Sci. USA, 92:325–329, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ralf Hofestädt Thomas Lengauer Markus Löffler Dietmar Schomburg

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bornberg-Bauer, E. (1997). Simple folding model for HP lattice proteins. In: Hofestädt, R., Lengauer, T., Löffler, M., Schomburg, D. (eds) Bioinformatics. GCB 1996. Lecture Notes in Computer Science, vol 1278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033211

Download citation

  • DOI: https://doi.org/10.1007/BFb0033211

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63370-9

  • Online ISBN: 978-3-540-69524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics