Skip to main content

Mechanisms of regulation and functions of guanylyl cyclases

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 135

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 135))

Abstract

Although enormous progress in understanding guanylyl cyclase structure and regulation has been recently made, many questions remain. There are now numerous guanylyl cyclase sequences, and signature sequences for discrete domains within these molecules can be identified. The majority of the guanylyl cyclases identified, however are orphan receptors. A primary goal, therefore, is the identification of ligands for the numerous orphan receptor guanylyl cyclases. Identification of these molecules may provide insight into systems such as vision and olfaction among others. In addition, it will be of interest to identify guanylyl cyclase regulatory proteins. These molecules may provide insight into guanylyl cyclase regulation and provide targets for other signaling pathways to modulate guanylyl cyclase activity. Finally, the information gained from structural studies of adenylyl cyclase has shed new light on the guanylyl cyclase catalytic domain, and raised the possibility of a previously unidentified regulatory pocket within the catalytic domain. Understanding the role of this potential regulatory region may provide new insight into not only guanylyl cyclase regulation, but numerous physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

NO:

nitric oxide

CO:

carbon monoxide

ANP:

atrial natriuretic peptide

AMPPNP:

5′-adenylylimidodiphosphate

ATPγS:

adenosine 5′-O-thiotriphosphate

2′d3′ AMP:

2′-deoxyadenosine 3′-monophosphate

sGC:

soluble guanylyl cyclase

mGC:

membrane guanylyl cyclase

AC:

adenylyl cyclase

STa:

heat-stable enterotoxin of E. coli

PKC:

protein kinase C

GC-A-G:

guanylyl cyclase A-G

TM:

transmembrane domain

ECD:

extracellular domain

KHD:

kinase homology domain

DD:

dimerization domain

CHD:

cyclase homology domain

HBD:

heme binding domain

ODQ:

1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one

References

  • Aparicio JG, Applebury ML (1996) The photoreceptor guanylate cyclase is an autophosphorylating protein kinase. J Biol Chem 271:27083–27089

    Google Scholar 

  • Baude EJ, Arora VK, Yu S, Garbers DL, Wedel BJ (1997) The cloning of a Caenorhabditis elegans guanylyl cyclase and the construction of a ligand-sensitive mammalian/nematode chimeric receptor. J Biol Chem 272:16035–16039

    Google Scholar 

  • Bentley JK, Tubb DJ, Garbers DL (1986) Receptor-mediated activation of spermatozoan guanylate cyclase. J Biol Chem 261:14859–14862

    Google Scholar 

  • Chang C, Kohse KP, Chang B, Hirata M, Jiang B, Douglas JE, Murad F (1990) Characterization of ATP-stimulated guanylate cyclase activation in rat lung membranes. Biochim Biophys Acta 1052:159–165

    Google Scholar 

  • Chinkers M, Singh S, Garbers DL (1991) Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem 266:4088–4093

    Google Scholar 

  • Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394

    Google Scholar 

  • Chinkers M, Wilson EM (1992) Ligand-independent oligomerization of natriuretic peptide receptors:Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem 267:18589–18597

    Google Scholar 

  • Cooper N, Liu L, Yoshida A, Pozdnyakov N, Margulis A, Sitaramayya A (1996) The bovine rod outer segment guanylate cyclase, ROS-GC1, is present in both outer and synaptic layers of the retina. J Mol Neurosci 6:211–222

    Google Scholar 

  • Crane JK, Shanks KL (1996) Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C. Mol Cell Biochem 165:111–120

    Google Scholar 

  • Dessauer CW, Gilman AG (1997) The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of P-site inhibition. J Biol Chem 272:27787–27795

    Google Scholar 

  • Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 12:1345–1352

    Google Scholar 

  • Drewett JG, Garbers DL (1994) The family of guanylyl cyclase receptors: Their ligands and functions. Endocrine Reviews 15:135–162

    Google Scholar 

  • Fenrick R, McNicoll N, De Lean A (1996) Glycosylation is critical for natriuretic peptide receptor-B function. Mol Cell Biochem 165:103–109

    Google Scholar 

  • Foerster J, Harteneck C, Malkewitz J, Schultz G, Koesling D (1996) A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of alpha 1 and beta 1 subunits. Eur J Biochem 240:380–386

    Google Scholar 

  • Foster DC, Garbers DL (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J Biol Chem 273:16311–16318

    Google Scholar 

  • Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly Co-sensitive enzyme. EMBO J 15:6863–6868

    Google Scholar 

  • Friebe A, Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53:123–127

    Google Scholar 

  • Garbers DL (1979) Purification of soluble guanylate cyclase from rat lung. J Biol Chem 254:240–243

    Google Scholar 

  • Garbers DL, Koesling D, Schultz G (1994) Guanylyl cyclase receptors. Mol Biol Cell 5:1–5

    Google Scholar 

  • Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744

    Google Scholar 

  • Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B (1995) Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol 48:184–188

    Google Scholar 

  • Gerzer R, Böhme E, Hofmann F, Schultz G (1981) Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132:71–74

    Google Scholar 

  • Goraczniak RM, Duda T, Sharma RK (1992) A structural motif that defines the ATP-regulatory module of guanylate cyclase in atrial natriuretic factor signalling. Biochem J 282:533–537

    Google Scholar 

  • Gow AJ, Stamler JS (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391:169–173

    Google Scholar 

  • Harteneck C, Koesling D, Soling A, Schultz G, Bohme E (1990) Expression of soluble guanylate cyclase:catalytic activity requires two enzyme subunits. FEBS Lett 272:221–223

    Google Scholar 

  • Hobbs AJ (1997) Soluble guanylate cyclase:the forgotten sibling. Trends Pharmacol Sci 18:484–491

    Google Scholar 

  • Humbert P, Niroomand F, Fischer G, Mayer B, Koesling D, Hinsch K, Gausepohl H, Frank R, Schultz G, Böhme E (1990) Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem 190:273–278

    Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1982) Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA 79:2870–2873

    Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1984) Regulation of purified soluble guanylate cyclase by porphyrins and metalloporphyrins:a unifying concept. Adv Cyclic Nucleo Res 17:267–274

    Google Scholar 

  • Itakura M, Iwashina M, Mizuno T, Ito T, Hagiwara H, Hirose S (1994) Mutational analysis of disulfide bridges in the type C atrial natriuretic peptide receptor. J Biol Chem 269:8314–8318

    Google Scholar 

  • Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241

    Google Scholar 

  • Kelsell RE, Gregory-Evans K, Payne AM, Perrault I., Kaplan J., Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184

    Google Scholar 

  • Kharitonov VG, Sharma VS, Pilz RB, Magde D, Koesling D (1995) Basis of guanylate cyclase activation by carbon monoxide. Proc Natl Acad Sci USA 92:2568–2571

    Google Scholar 

  • Kishimoto I, Dubois SK, Garbers DL (1996) The heart communicates with the kidney exclusively through the guanylyl cyclase-A receptor:acute handling of sodium and water in response to volume expansion. Proc Natl Acad Sci USA 93:6215–6219

    Google Scholar 

  • Koller KJ, Lipari MT, Goeddel DV (1993) Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormone-stimulated guanylyl cyclase activity. J Biol Chem 268:5997–6003

    Google Scholar 

  • Kurose H, Inagami T, Ui M (1987) Participation of adenosine 5′-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Letts 219:375–379

    Google Scholar 

  • Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764

    Google Scholar 

  • Laura RP, Dizhoor AM, Hurley JB (1996) The membrane guanylyl cyclase, retinal guanylyl cyclase-1, is activated through its intracellular domain. J Biol Chem 271:11646–11651

    Google Scholar 

  • Liu X, Seno K, Nishizawa Y, Hayashi F, Yamazaki A, Matsumoto H, Wakabayashi T, Usukura J (1994) Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 59:761–768

    Google Scholar 

  • Liu Y, Ruoho AE, Rao VD, Hurley JH (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases:modeling and mutational analysis. Proc Natl Acad Sci USA 94:13414–13419

    Google Scholar 

  • Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68

    Google Scholar 

  • Lopez MJ, Garbers DL, Kuhn M (1997) The guanylyl cyclase-deficient mouse defines differential pathways of natriuretic peptide signaling. J Biol Chem 272:23064–23068

    Google Scholar 

  • Lowe DG (1992) Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochemistry 31:10421–10425

    Google Scholar 

  • Mann EA, Jump ML, Wu J, Yee E, Giannella RA (1997) Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 239:463–466

    Google Scholar 

  • Nakane M, Arai K, Saheki S, Kuno T, Buechler W, Murad F (1990) Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265:16841–16845

    Google Scholar 

  • Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    Google Scholar 

  • Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O (1998) Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA 95:2547–2551

    Google Scholar 

  • Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frezal J, Dufier JL, Pittler S, Munnich A, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nature Genet 14:461–464

    Google Scholar 

  • Perrault I, Rozet JM, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63:651–654

    Google Scholar 

  • Potter LR (1998) Phosphorylation-dependent regulation of the guanylyl cyclaselinked natriuretic peptide receptor B:dephosphorylation is a mechanism of desensitization. Biochemistry 37:2422–2429

    Google Scholar 

  • Potter LR, Garbers DL (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267:14531–14534

    Google Scholar 

  • Potter LR, Hunter T (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18:2164–2172

    Google Scholar 

  • Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B (1996) Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol 50:1–5

    Google Scholar 

  • Schulz S, Lopez MJ, Kuhn M, Garbers DL (1997) Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxinresistant mice. J Clin Invest 100:1590–1595

    Google Scholar 

  • Schulz S, Wedel BJ, Matthews A, Garbers DL (1998) The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273:1032–1037

    Google Scholar 

  • Snyder SH (1992) Nitric oxide:First in a new class of neurotransmitters? Science 257:494–496

    Google Scholar 

  • Stone JR, Marletta MA (1995a) Heme stoichiometry of heterodimeric soluble guanylate cyclase. Biochemistry 34:14668–14674

    Google Scholar 

  • Stone JR, Marletta MA (1995b) The ferrous heme of soluble guanylate cyclase:formation of hexacoordinate complexes with carbon monoxide and nitrosomethane. Biochemistry 34:16397–16403

    Google Scholar 

  • Stone JR, Marletta MA (1996) Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 35:1093–1099

    Google Scholar 

  • Stone JR, Marletta MA (1998) Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide:implications for the role of cleavage of the ironhistidine bond during activation by nitric oxide. Chem Biol 5:255–261

    Google Scholar 

  • Stults JT, O'Connell KL, Garcia C, Wong S, Engel AM, Garbers DL, Lowe DG (1994) The disulfide linkages and glycosylation sites of the human natriuretic peptide receptor-C homodimer. Biochemistry 33:11372–11381

    Google Scholar 

  • Sunahara RK, Beuve A, Tesmer JJ, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificites between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    Google Scholar 

  • Tang WJ, Gilman AG (1995) Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. Science 268:1769–1772

    Google Scholar 

  • Taylor SS, Knighton DR, Zheng J, Ten Eyck LF, Sowadski JM (1992) Structural framework for the protein kinase family. Ann Rev Cell Biol 8:429–462

    Google Scholar 

  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278:1907–1916

    Google Scholar 

  • Thompson DK, Garbers DL (1995) Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem 270:425–430

    Google Scholar 

  • Thorpe DS, Morkin E (1990) The carboxyl region contains the catalytic domain of the membrane form of guanylate cyclase. J Biol Chem 265:14717–14720

    Google Scholar 

  • Traylor TG, Sharma VS (1992) Why NO?. Biochemistry 31:2847–2849

    Google Scholar 

  • Tucker CL, Hurley JH, Miller TR, Hurley JB (1998) Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 95:5993–5997

    Google Scholar 

  • Vaandrager AB, van der Wiel E, de Jonge HR (1993) Heat-stable enterotoxin activation of immunopurified guanylyl cyclase C. Modulation by adenine nucleotides. J Biol Chem 268:19598–19603

    Google Scholar 

  • Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide:a putative neural messenger. Science 259:381–384

    Google Scholar 

  • Wada A, Hasegawa M, Matsumoto K, Niidome T, Kawano Y, Hidaka Y, Padilla PI, Kurazono H, Shimonishi Y, Hirayama T (1996) The significance of Ser 1029 of the heat-stable enterotoxin receptor (STaR):relation of STa-mediated guanylyl cyclase activation and signaling by phorbol myristate acetate. FEBS Lett 384:75–77

    Google Scholar 

  • Wedel BJ, Garbers DL (1998) Guanylyl cyclases:approaching year thirty. Trends Endocinol Metab 9:213–219

    Google Scholar 

  • Wedel B, Humbert P, Harteneck C, Foerster J, Malkewitz J, Bohme E, Schultz G, Koesling D (1994) Mutation of His-105 in the beta 1 subunit yields a nitric oxideinsensitive form of soluble guanylyl cyclase. Proc Natl Acad Sci USA 91:2592–2596

    Google Scholar 

  • Wedel B, Harteneck C, Foerster J, Friebe A, Schultz G, Koesling D (1995) Functional domains of soluble guanylyl cyclase. J Biol Chem 270:24871–24875

    Google Scholar 

  • Weikel CS, Spann CL, Chambers CP, Crane JK, Linden J, Hewlett EL (1990) Phorbol esters enhance the cyclic GMP response of T84 cells to the heat-stable enterotoxin of Escherichia coli (STa). Infection and Immunity 58:1402–1407

    Google Scholar 

  • Yang R, Foster DC, Garbers DL, Fülle H (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606

    Google Scholar 

  • Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742

    Google Scholar 

  • Zhang G, Liu Y, Ruoho AE, Hurley JH (1997) Structure of the adenylyl cyclase catalytic core. Nature 386:247–253

    Google Scholar 

  • Zhao Y, Marletta MA (1997) Localization of the heme binding region in soluble guanylate cyclase. Biochemistry 36:15959–15964

    Google Scholar 

  • Zhao Y, Schelvis JPM, Babcock GT, Marletta MA (1998) Identification of histidine 105 in the β1 subunit of soluble guanylate cyclase as the heme proximal ligand. Biochemistry 37:4502–4509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Foster, D.C., Wedel, B.J., Robinson, S.W., Garbers, D.L. (1999). Mechanisms of regulation and functions of guanylyl cyclases. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 135. Reviews of Physiology, Biochemistry and Pharmacology, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0033668

Download citation

  • DOI: https://doi.org/10.1007/BFb0033668

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64779-9

  • Online ISBN: 978-3-540-68704-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics